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ABSTRACT

The statistical properties of low-level wind-turbulence data

were obtained with the model 1080 total vector anemometer and the

model 1296 dual split-film anemometer, both manufactured by Thermo-

Systems Incorporated. The data obtained from the above fast-response

probes were compared with the results obtained from a pair of Gill

propeller anemometers.

The digitized time series representing the three velocity com-

ponents and the temperature were each divided into a number of blocks,

the length of which depended on the lowest frequency of interest-and

also on the storage capacity of the available computer. A moving-

average and differencing high-pass filter was used to remove the trend

and the low frequency components in the time series.

The degree of nonstationarity of each time series was determined

by using a non-parametric statistical test on the statistical quantities

calculated for each block in the time series. Besides the mean, the

variances and the covariances of the fluctuating velocity components

and the fluctuating temperature, spectral and cross-spectral estimates of

each of the time series were obtained with the use of the fast Fourier

transformation (F.F.T) technique. A special F.F.T.algorithmic with a

no-bit reversal procedure for the analysis of series of long duration

and high sampling rate (200 samples per second) has been developed.

In addition, a time series representing the streamwise fluctuating

velocity component was simulated from the semi-empirical von Karman spectrum

equation. The spectrum calculated from the simulated time series was com-

pared with the original spectrum function from which the data was obtained.

The calculated results for each of the anemometers used are represented

in graphical or tabulated form. The Fortran program for the entire data

analysis procedure is listed in appendix B.
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CHAPTER I

INTRODUCTION

With the increasing necessity of understanding the effect of the

turbulence on human activities in the atmospheric boundary layer, the

knowledge of wind and temperature fluctuations becomes essential.

This dissertation presents a statistical analysis of fluctuating wind

data consisting of three velocity components for each of the three

spatial directions and temperature in the time domain. Correlations

and spectra will be calculated by using the experimental data ob-

tained from T.S.I. split - film anemometers and a consequent data

acquisition system as reported by Tieleman et. al. [95].

1.1 STATEMENT OF THE PROBLEM

Although geophysical flows provide much larger Reynolds numbers

than wind tunnel flows, relatively few accurate results of the wind

turbulence measurements in the atmospheric boundary layer are avail-

able because of the complexity and inadequacy of the required instru-

mentation. Existing measuring equipment usually cannot provide

enough information for the three dimensional structure of the turbu-

lence and its evolution with time. The selection of the three dimen-

sional split-film anemometer (TSI-1080D) in this research program has

many advantages over most of the presently used anemometers (95].

1
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Insufficient knowledge of the ground wind structure is due to

a lack of extensive experiments and due to large volumes of data

necessary to obtain accurate and meaningful results. In order to

understand the microstructure of turbulence, we must not only consider

the energy spectrum but also several statistical quantities which are

relevant to the basic mechanics of the motion of the air. The measure-

ment of the ground wind structure and its statistical analysis becomes

essential to the solution of such practical problems in the atmo-

spheric boundary layer as low altitude operations of aircraft, design

of many engineering structures, and atmospheric diffusion. It is

therefore imperative to improve statistical calculation techniques of

the measured quantities especially when dealing with large volumes of

data even beyond the storage capacity of the existing computers.

The purpose of this dissertation is to analyse the data based up-

on the general aspects of time series analysis. First, the analysis

in the time domain where the means, variances and covariances of

blocked subseries are calculated. Second, the analysis in the fre-

quency domain where the power- and cross- spectral density estimations

are calculated.

The power spectrum which provides an insight to the spectral dis-

tribution of the kinetic energy of the turbulence, is basic to the

understanding of the structure of the turbulence. The cross spectrum

concerns itself primarily with the transport and conversion of energy

and the transport of momentum and heat in the surface layer. All of

these are fundamental in the understanding of micrometeorological

processes in the atmosphere. The real part of the cross spectrum is
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.called cospectrum which for example, shows the effect of height above

the ground on the scale of the eddies.. The imaginary part of the

cross spectrum is called quadrature spectrum which gives some infor-

mation about the vertical extent of eddies. Therefore the spectral

behavior of atmospheric turbulence is of considerable and practical

importance.

Power and cross-spectral analysis of meteorological time series

are generally based on the assumption that these series are stationary

in the sense that their statistical properties are invariant with

translations in time. At present, there exist techniques to analyse

stationary time series records, but the techniques available for the

analysis of non-stationary time series records are still inadequate

and do not lend themselves to meaningful interpretations of physical.

problem. It is therefore necessary to use proper filtering techniques

to adjust the non-stationary time series so that under certain cir-

cumstances the existing statistical analysis for stationary time

series may be used on these non-stationary data. It is also assumed

that the time series are ergodic which permits time averaging bo'be

used in place of ensemble averaging.

Meteorological time series can mostly be represented as the sums

of periodic (regular) and stationary (irregular) components since

they almost always contain some definite periods, such as days, years

or even decades etc. The longer than record length trends must be

filtered out in order to eliminate the bias introduced in the spectral

calculations. A moving-average and differencing high-pass filter is

applied to our time series so as to create a new, mean free, time series.
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There are methods available to calculate the correlation functions

via the fast Fourier transform method and to apply the thoroughly

studied lag window to obtain the smoothed spectrum. For large volumes

of data this is not considered to be an economical and practical

approach. Development of direct Fourier transform methods as applied

to meteorological data and consequent smoothing techniques are still

in their infant stages and have not been thoroughly studied. The reason

for this is partly due to the potential flexibility of the fast Fourier

transform, which is much greater than the indirect or Blackman-Tukey

method.

The direct Fourier transform method or the periodogram approach

is used for the calculations of power and cross spectra in this

dissertation. A new algorithm is developed for the fast Fourier

transformation which requires no bit-reversal procedures during the

final stages of the calculations. A computer program based on non

bit-reversal calculations is developed. Various time-domain smoothing

functions have been applied to.check the spectral variation. The

calculated power and cross spectra agree fairly well with those re-

ported in the literature of atmospheric turbulence.

1.2 REVIEW OF LITERATURE

The significance of correlation between the velocity of a fluid

particle at one time and that of the same fluid particle at a later

time or between simultaneous velocities at two fixed points was devel-

oped in 1921 by G. I. Taylor [90]. Taylor [91] further defined the

scale of turbulence when it is applied either to the Lagrangian or to
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the Eulerian concepts of fluid flow. The connection between the

spectrum measured at a fixed point, and the correlation between

simultaneous values of velocity measured at two points was also pro-

posed by Taylor [92] in 1938. He pointed out that the correlation and

the spectrum formed a Fourier transform pair.

In general there exist two methods for the digital spectral

analysis of stationary time series. The method which requires to

calculate the correlation function first before taking its Fourier

transformation to obtain the spectral density function is called the

indirect method. Instead of calculating all the correlation functions,

the direct method of computing spectral-density estimates is achieved

by squaring the quantity which is obtained directly from the Fourier

transformation of the raw observations.

The spectral analysis using the indirect method has become a

significant tool in the statistical analysis of stationary time series

since the pioneer work of Daniel [22] and Bartlett [3,4]. They esti-

mated consistent estimates of the spectral density function by mod-

ification of the classical periodogram (i.e. harmonic) analysis.

Optimum consistent estimates of the spectrum of a stationary time

series were studied by Parzen [74]. Most of the work involving

spectral analysis was done primarily by mathematical statisticians in

the fifties. The practical situation of designing a spectral analysis

satisfying many specific conditions had not been studied until Black-

man and Tukey [10] in 1958.
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With the advent of the electronic computers and improvement in

numerical calculation techniques in spectral analysis, many valuable

papers were published in the earlier Sixties (Jenkins[49], Parzen [75],

Tukey [96] ). The users of the spectral analysis were still faced

with the problem that if only a sample record of finite length is

given, and no background informationis available, there still existed

no precise method of obtaining an estimate which could be considered

the most accurate one. One can actually construct many estimates of

the spectrum by using different smoothing techniques, yet the optimum

one, relies on the role of the chosen bandwidth [84].

The spectral calculations via correlation functions or indirect

method have been theoretically well established in the early Sixties.

The periodogram approach or direct Fourier transform method in the

time series analysis had been considered to be impractical because of

the amount of computations involved. Actually, the periodogram as an

estimate of the spectral density function of a stationary time series

has had a long and controversial history starting with A. Schuster in

1898 when he was investigating the hidden oscillations in meteorological

phenomena with periods of 26 days. In 1965, Jones [53] reappraised

the periodogram in spectral analysis and pointed out some advantages

over the indirect method for multiple dimensional processes.

During the controversy over the choice of direct or indirect

approach to the calculation of the spectrum of stationary time 
series,

the revolutionary paper on the Fourier transformation by Cooley and

Tukey [19] was published in 1965. The algorithm they presented for

the calculation of complex Fourier series permits the reduction of
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operations by a factor of N2/(N log 2 N) for a data sample length N.

The latter should have a magnitude which is equal to an integer power

of two. The operation consists of a complex multiplication followed

by a complex addition. Numerous papers have been published to improve

the algorithm or to explain the paper by Cooley and Tukey through

different mathematical formulations. Ferrie [28] studied the relative

advantages and disadvantages of various algorithms on the basis of

execution time, storage and accuracy. He concluded that no single

fast Fourier transform algorithm represents the best choice.

Following the discovery of the FFT (Fast Fourier Transform)

algorithm, earlier methods [10,75] no longer can be relied upon for

the best statistical and computational procedures. Bingham et. al.

[9], Cooley et. al. [18] and Welsh [105] presented various techniques

for the estimation of power and cross- spectra via FFT, whose appli-

cations in electronic engineering have been published in two exclusive

issues in June 1967 and June 1969 of IEEE transactions on Audio and

Electroacoustics.

The direct and indirect methods do not produce the same results

though both have relative advantages [27]. For a spectrum with a

large slope, the direct method permits more window leakage than the

indirect method. The indirect or correlation function method is more

effective than the direct FFT or periodogram method in computing the

spectrum of short time series. For large data samples, the direct or

FFT method seems to be the only feasible one. The indirect method has
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been considered not practical to handle a time series exceeding

50,000 data points for spectral estimations.

Oort and Taylor [69] applied the FFT technique to analyse the

spectrum of the horizontal wind speed and to investigate the diurnal

variability in the kinetic energy. Ryznar [85] measured wind and

temperature profiles and turbulent fluctuations of wind velocity and

temperature under various stability conditions of horizontally

homogeneous turbulence in the atmospheric surface layer. He concluded

that the integration of the spectrum did not obtain the corresponding

total variance prior to the spectral transformation. The reason is

obviously due to the application of a "cosine bell" data window which

reduced the variances of the spectral density estimate by a factor of

3/8 [43]. Kaimal et. al. [55] calculated power spectra and cospectra

of turbulence in the surface layer using the fast-Fourier transform

technique. A new short time series was generated from the original

time series by averaging the neighboring data points to investigate

the information in the lower frequency range.

Most of the books written on time series analysis such as

Anderson [2], Grenander and Rosenblatt [41], Hannan [42], Wold [106]

and the Brown symposium edited by Rosenblatt in 1963 [24] are con-

cerned almost exclusively with theory. Practical applications of time

series analysis started with Blackman and Tukey [10], though it was

primarily from the point of view of the communication engineer.

Books such as Brown [13], Fishman [31] and Granger and Hatanaka [39]

provide a heuristic introduction to economic time series. The books
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worthy of engineering applications are Bendat and Piersol [6],

Jenkins and Watts [51], Otnes and Enochson [67] and the Wisconsin

seminar edited by B. Harris [72] in 1966.

The problem of obtaining the best spectral estimate via the fast

Fourier transform lies in the selection of the smoothing function

which depends also on the type of the data to be analyzed. In dealing

with different types of data such as atmospheric wind data, biological

data, acoustical data or economical data, the selection of the same

smoothing function could lead to different interpretable results.

Only by the proper choice of a suitable smoothing function in 
spectral

analysis can meaningful results be achieved.



CHAPTER II

DATA PROCESSING SYSTEM

The atmospheric wind turbulence data are collected through a

three-dimensional split film anemometer (TSI-1080D) which consists

of three split film sensors and a copper-constantan thermocouple

for ambient temperature measurement. Each sensor consists of a

0.006 inch diameter quartz rod coated with a platinum film of approxi-

mately 1000 A in thickness. The total sensor length is 0.200 inches

with approximately 0.08 inches of active usage.

Data was sampled at a rate of 200 samples per second, and a

special data acquisition and handling system has been developed to

handle samples of half an hour duration. Detailed explanation of the

data acquisition and handling system was presented in a report by

Tieleman et. al. [95].

The data acquisition and data handling system was located in an

instrumentation trailer positioned near the V.P.I. and S.U. low speed

windtunnel. The instruments were used with a 350 ft. long connecting

cable since mounting on the 300 ft. meteorological tower at NASA

Wallops Station was proposed. After lengthy calibration in the

low speed windtunnel, the probes were mounted in the atmosphere on top

of the exchange section of this windtunnel. Since only a limited

amount of time was available to test the probes in the atmosphere and

10



also since movement of the instrumentation trailer was a rather com-

plicated operation,the instruments were tested in the atmosphere:at

the best location which could be reached with the 350 ft. cable from

the position of the instrument trailer. The air flow on the top of

the exchange section of the windtunnel (approximately 40 ft. above the

ground) was a great deal influenced by surrounding buildings as well

as the windtunnel and the exchange tower itself.

In addition to the fast response T.S.I. probes, two slower res

sponse Gill anemometers (see Appendix A) were positioned next to the

T.S.I. probe so that comparisons could be made. The T.S.I. probes

were positioned in a horizontal plane and could be rotated about 
a

vertical axis by an antenna rotor into the prevailing wind direction.

In the report by Tieleman et. al. [95] it was concluded among other

things that the T.S.I. probes could operate with the best accuracy

when they were directed into the mean wind.

The two Gill anemometers were mounted also on the antenna rotor

so that the three sensors could be moved all simultaneously. One of

the Gill anemometers was mounted parallel to the T.S.I. probe and the

second Gill anemometer was mounted perpendicular to the first 
one in

the horizontal plane. Only two Gill anemometers were available so that

only statistics from the two horizontal components 
could be compared.

2.1 STATISTICAL ANALYSIS

Digitiz~dAata from the wind sensors were written on a 9-track

magnetic tape in blocks with 209 samples. in each block. 
Computer

programs were developed [951 to convert the raw data from analog
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voltages to velocity components and temperature by using IBM 370/155

digital computer.

The computed velocity components and temperature were again stored

on a 9-track magnetic tape with the block size increased twice to 418

points in order that slight reduction in data-storage space on the tape

and a saving of calculation time in the computer could be achieved.

The data was collected at a rate of 200 samples per second, and

therefore 360,000 samples were recorded during a half hour period. The

sample size N is determined by the total recording time T and by the

sampling interval At through the following relationship

N- T (2.1.1)
At

The sampling rate, fs, of the collected data is considered as an

important factor in the data reduction process. This rate is the key

to the determination of the Nyquist frequency, fn which is the highest

frequency one can obtain without introducing aliasing. The sampling

rate and the Nyquist frequency are related by the following expression

S = 1 f (2.1.2)
n 2 s

Let Ai(n), i = 1,2,...,4 represent the three velocity components

and the temperature recorded by the T.S.I. probe. The first three sub-

scripts 1,2,3 denote the components of the instantaneous velocity vector

in the coordinate system as determined by the directions of the sensors
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on the T.S.I. probes (X, Y, Z). Subscript 4 represents the temperature

at the point where the probe is located.

The time series are divided into many blocks. The determination

of the number of data points in each block depends primarily on the

storage capacity of the available digital computer. The maximum number

of data points should be chosen so that enough spectral information

may be obtained in each block during subsequent spectral analysis. The

basic requirement is that the selected block size should be long com-

pared to the random fluctuations of the time history., The sample mean

and the sample probe yaw angle are calculated from the block mean and

the block probe yaw angle.- The mean value, the probe yaw angle, and

the variance-in each block may be used to test the sample for

stationarity as described in section 2.2.

2.1.1 MEAN VALUES IN EACH BLOCK

The sample is broken into M non-overlapping blocks each of which

contains n points, so that Mn = N. The wind turbulence data may be

considered to be a combination of a mean component and a fluctuating

component. For a given number of n data points of the i-th time series

Ai (n) in each block, the mean component may be described if ergodicity

is assumed by the average value of all n values,

_m 1 n
Ai =n Ai(j), i=l,...,4, (2.1.3)
where subscript i refers to the number of the time series and superscriptj=

where subscript i refers to the number of the time series and superscript



14

m denotes the block number and the bar describes mean value. By

choosing n = 8192 and M = 44, we are analysizing 360,448 data points

in approximately a sample of one half hour duration. The choice of

8192 data points for each block is to meet the requirement for appli-

ation of the fast Fourier transform algorithm that the number of data

points to be transformed must be a power of two. Also storage re-

strictions in the digital computer limits the block size.

2.1.2 PROBE YAW ANGLE IN EACH BLOCK

For each block of data points, a probe yaw angle 
8m is calcu-

lated based on the previously obtained block mean values. The probe

yaw angle is determined by the angle between the T.S.I. probes and the

direction for which the lateral component of the mean velocity vanishes.

This last direction fixes the so-called mean wind coordinate system.

The x-direction is the direction of the mean wind, the y-direction

(lateral direction) perpendicular to the x-direction in the horizontal

plane and the z-direction is vertically upward.

The velocity components calculated initially in the coordinate

system as determined by the directions of the sensors on the T.S.I.

probes have to be transformed into components in the mean wind 
co-

ordinate system for which'the statistical quantities of the fluctu-

ating velocities are of interest.

The transformation of the velocity components from one coordinate

system to the other is carried out in two steps. First, one obtains

the components in the probe oriented coordinate system by the following

relationship
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-m _m
A = Eij A. (2.1.3)

where Eij, i=1,2,3 and j=1,2,3, are the direction cosines for the

sensor oriented coordinate directions X Y Z and the probe oriented

coordinate directions x*y*z*, the geometry of which is shown in Fig.

(la). It is seen that the x* coordinate direction coincides with the

probe axis, the origin of which is located at the probe tip. The y*-

axis is perpendicular to the probe in a horizontal plane while z*-

axis is vertically upward.

Through geometric relations, Eq. (2.1.3) may be written in the

following matrix form

Al 0.57735 0.57735 0.57735 A

A2 0 0.70711 -0.70711 A2 (2.1.4)

-0.8165 0.40824 0.40824 A

The second step is to transform to the mean wind coordinates. This

further transformation between the probe oriented coordinate system

x*y*z* and the coordinate system in the mean wind direction x, y, and

z, as shown in Fig. (lb), may be achieved by the following relationship

U = Ekj j=1,2,3 (2.1.5)

or in matrix form
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U1  cos6 sin 0 Am

-m *

U2  = sin cos 0 Am (2.1.6)

-m
U3  0 0 1 Am

By combining the Eqs. (2.1.4) and (2.1.6) one can determine the

x component of the block mean as follows

m
U = 0.57735 cosB.; Am + (0.57735 cos8 - 0.70711 sinE) AT

+ (0.57735 cosB + 0.70711 sin8) Am . (2.1.7)

Maximizing the mean wind component in the x-direction with

respect to the probe yaw angle (i.e., daO/d = 0, or similarly
-m

vanishing of im) one obtains an expression for the block yaw angle

tan8m = -1.22457 2 M , m=1,2,...,M . (2.1.8)
I + A 2 + A3

The change of the probe yaw angle in each block indicates the

shifting of the mean wind as averaged over 40.96 seconds (the

latter is the total real time for each block). If there are signi-

ficant changes in the block yaw angle from one block to the next,

.then we have reasons to believe the data to be nonstationary. The
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same expressions 2.1.4, 2.1.6, and 2.1.8 may be used to determine

the sample yaw angle and consequently the sample means, sample

variances and sample covariances of the velocity components in the

x,y,z coordinate directions.

2.1.3 Block Variances of the Time Series.

The variances of the velocity components and temperature for

each block are determined by the following equation

a = Ai(j) Ai(j) - (A)2 i=1,..,4 (2.1.9)1 n j=l 1

where the subscripts 1 ,2,3 represent the three velocity components and

subscript 4 denotes the temperature. The positive square root of the

variance is called the standard deviation and is calculated by

--m 1/2
sm ) /2 i=l,..,4 (2.1.10)

where m again denotes the block number. The block standard-deviations

calculated by Eq. (2.1.10) will also be used to determine the non-

stationarity of the data by using a statistical test which will be dis-

cussed in section (2.2).

2.1.4 Sample Mean and Sample Probe Yaw Angle

The sample mean and the sample probe yaw angle are simply determined

from the arithmetic averages of the block mean values and the block

yaw angles in each sample by the following formulas
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M
A i AT i=1,..4 (2.1.11)

and

tan = - 1.22475 ( ) A (2.1.12)

A1 + A2+ A3

where M is the total number of blocks or subseries.

The sample mean value and the sample probe yaw-angle will be used

to determine the velocity components in the mean wind coordinate

system by the transformation (2.1.4) and (2.1.6).

Following the determination of the sample mean values for each of

the three velocity components and the sample probe yaw angle in the

data processing computer program called "DATPl", the trend and long

period fluctuations will be removed through a program called 
"TREND".

The theory of this filtering process will be described in section (2.3).

The filtered data will be used to compute sample variances and co-

variances as well as their respective values in the mean wind direc-

tions through coordinate transformations. These computations will be

included in another data processing computer program called "DATP2".

2.2 Statistical Test

The computed statistical properties for each block as described

in the previous section 2.1 from a single sample record can be used

to test the stationarity of the time series. The wide variations of

the probe yaw angle may indicate relatively large angular 
shifts in the

wind direction
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If the statistical properties thus calculated do not vary signifi-

cantly from one block to the next, one may be assured to a certain

degree stationarity of the time series. Otherwise, the data of interest

might contain nonstationarities and are not fit for further analysis.

Without the detailed knowledge of the frequency composition of

the calculated statistical properties, a non-parametric approach is

necessary to determine whether or not the data are stationary [6]. A

non-stationary trend test in either the mean or the variance is

adapted from Kendall and Stuart [58]. The theoretical derivation is

based on a paper written by Mann [65].

Suppose the block mean of each of the velocity components or the

block yaw angle or their standard devfations are denoted by

S1 , S2 , S3 ,.... SM ,

where M denotes the total number of blocks in the sample.

Now, a reverse arrangement of such a set of block variables is

defined as to occur every time

Sj > Si  for all j > i

and i = 1,2,3,..., M-l.

For a given value of index i, the number of reverse arrangements

for this given i is denoted by Ti such that

M
Ti = Tij , (2.2.1)

j=i+l

where

1I if Sj > Si

Tiji
0 if Sj < Si
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Now, the total number of reverse arrangements is expressed by

M-l M-l M
T = c Ti = E T . (2.2.2)

i=l i=l j=i+l

In the case the set of block variables shows an upward trend as

far as their magnitude is concerned, the total number of 
reverse ar-

rangements can be expected to be some relatively large 
number. Conversely,

if the set shows a downward trend the total number of reverse arrangements

is relatively small. If no discernible trend is present the total number

of reverse arrangements is some intermediate number.

The hypothesis Ho of no trend present against the alternative

of a trend being present at an a-level of significance can be ex-

pressed by

Reject Ho if T > (~; M), T < t(l--; M)

(2.2.3)

Accept Ho if t(l- -; M) < T < t("- M).

In other words this hypothesis is similar to a symmetric 2-sided

confidence interval for T, with a confidence coefficient, 1 - c,

and a lower limit, TL = t(l--; M). Therefore, for all T,
2

P { TL <'T < TU } = 1 - . (2.2.4)
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For a large number of block variables (i.e. larger than 10), a

normal distribution for the total number of reverse arrangements of

each set of block variables can be assumed. So that, the estimated

value of T, T can be given by [64]

T* T E(T (2.2.5)
[VAR(T)]I/2

where the average value and the variance of the total 
number of re-

verse arrangements of each set are found to be

E M(M - 1) (2.2.6)

and

2M3 + 3M2 -_ M (2.2.7)
VAR[T] =

72

respectively. These expressions are only valid when the set of block

averages does not show a trend.

The standard normal distribution function of the estimated 
values

of T for an asymptotic N(0,1) distribution when Ho is true, is given

by

T 2
-S

4T ]  1 e2 d S (2.2.8)

VT 
-C
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where

T 1. (2.2.9)

2T 2M 3M2 -5M

72

The right hand side of eq. (2.2.9) is seen to be in the standarized

S' where S' = T + ,, M-  1 and a = {VART]} 1/ 2 .
form of T where = T +

If the normal variable S' is not "standard",-its 
value must be stan-

darized according to T* = -so that P[T S'] =

The probability that the value of T is less than T for a given

a-level of significance can be written 
as

P[ T < T ] P IT ] aT (2.2.10)

where T is the percentile of the standard Normal Distribution. By

choosing different values of a, i.e. 0.95, 0.975, 
0.99, the Ta value

can be obtained from the standard distribution table [TABLE I].

For different values of T*, a table of reverse arrangement 
distribution

has been generated by using eq. (2.2.9). For different a-level of

significance, and different number of blocks 
M, the values of

t(-; M) and t(l - ; M) are given in Table II.

If the value of the total number of the reverse arrangements 
falls

outside the range in our criterion eq. (2.2.4) for 
a = 0.05, then a

possible error of 5% can be made if the hypothesis that 
the data are
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stationary is rejected. Clearly one wishes to commit such an error

only rarely. If the.value of T falls outside the range for 
a = 0.01,

then one will have less chance to make this error, and consequently

one has more confidence to reject the hypothesis that 
the data are

stationary.

This nonstationary trend test is generally effective in testing

against linear or monotonic trends, as shown in Fig. 2 and ineffective

against the type of nonstationarities as shown 
in Fig. 3 which show

a reversal in the trend. The trend test is generally not successful

in testing against the type of trends as shown in Fig. 4.

2.3 Removal of the Trend

Trend removal has been considered as an important step 
in the

digital processing of random data. Large distortions can occur in

the calculations of variances, covariances and spectral 
quantities if

trends are not removed from the data.

Trend removal is a special case of a general filtering 
process.

Filters are designed to pass either low or high 
frequencies of the

signal while attenuating or eliminating respectively 
high or low fre-

quency components. Filters, which pass low frequency components 
are

called low-pass filters while others which pass high frequencies 
are

called high pass filters. A third type of filters which passes a

band of intermediate frequencies and attenuate both very 
low and very

high frequencies in the signal are called 
band pass filter.

For meteorological time series, it is usually assumed that these

series are statistically stationary and can be 
represented as sums of
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regular (periodic) or irregular (stationary) components superimposed

on each other. It is observed that these series almost always contain

some definite periods that are due to certain external influences such

as the time of day the data was taken and long periodic oscillations due

to the presence of upstream obstacles. Since these periodic components

may not enter into our statistical analysis of the observed time series

some trend removal or filtering process is necessary.

2.3.1 Methods of Trend Removal

Different methods have been proposed for trend removal, the

selection of an appropriate one depends largely on the practical sit-

uations. For small samples, plotting is the best way to compare the

filtering effects upon the unfiltered time series. For samples with

a large number of data points, calculation time becomes one of the

essential factors to make the selection.

Dyer [25] suggested a modified difference filter applied to the

meteorological data. However, the calculation of every auto-correlation

coefficient between two neighboring values does not seem to be eco-

nomical for the large volume of data encountered. Houbolt [473 pro-

posed a high pass filter based on the idea of a symmetrical exponential

filter. The requirement of making two passes in the calculation re-

quires almost twice the computer time, which makes this method impractical.

It is generally known that the best way of estimating a trend is

to use a polynomial of low order by the least square method, yet this

method does not represent the trend satisfactorily. As a result, one

frequently makes use of the method of moving average based on the
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idea that although a low-order polynomial, say a cubic polynomial, may

not approximate the trend very satisfactory over the whole time interval

it may fit well over shorter intervals.

2.3.2 High Pass Filter

The high-pass filter applied to our data samples is obtained by

first constructing the frequency response function of the equally-

weighted moving-average low-pass filter which is the Fourier transform

of the equally-weighted time function. The filter shape of the high-

pass filter is obtained by squaring the frequency response function

of the low-pass filter and then subtracted from unity. This particular

high-pass filter is called the moving-average and differencing high-

pass filter.

2.3.2.1 Weighting Function

Digital filtering is simply a process by which a set of input data

A is transformed into a set of output data Ao by means of a linear

expression

T

o Wk Ak (2.3.1)
At T k At+k

where Wk are the suitably chosen weights and T is called the filter-

ing interval. Eq. (2.3.1) can be regarded as the numerical approxima-

tion of

A(t) = W(T) A (t - T) dT (2.3.2)

-CO
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which states that the convolution of W(t) and A (t) produces Ao(t).

The term dT is usually absorbed in the following form

Ao = I T "' +W 1 At 1 + WOA + WIAt+i

+ W t+ 
(2.3.3)

where T must be an even integer.

The weight Wo , which is multiplied by the observation At, is

termed the central principal weight. It is seen that the greatest

weight is placed on the most recent observation while both past and

future observations receive symmetrically diminishing weights. In

choosing an equally-weighted moving average filter, the weights selected

are all equal to , where T is the number of observations used in

computing the mean or the filtering interval as described in Eq. (2.3.1).

Therefore, the analytical form of the weighting function W(t) may be

expressed by

I T
W(t) T'  2 (2.3.4)

o, Itl >

It is seen that the weighting function W(t) is applied to the

T T
observations from - T to 2 so it is an even function of t. The fre-

quency response of the filter, H(f), is obtained from the Fourier
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transformation of the weighting function W(t) by

H(f) = W(t) e -i21ftdt (2.3.5)

or because of symmetry

0H(f) = 2 J0 W(t) cos(21fft) dt. (2.3.6)

For a finite filtering interval T, Eq. (2.3.6) may be written as

T/2

H(f) = 2 I W(t) cos(2wft) dt. (2.3.7)

0

Substituting Eq. (2.3.4) into the Eq. (2.3.7), the frequency

response function of the moving average filter may be written as

H(f) = sinft (2.3.8)

which has a value of unity at f=0. This frequency response function

is calculated from the equally-weighted moving average time-function.

To obtain a high pass filter, it is necessary to subtract the moving

average value from the original data.

The filtered data set for a moving average and differencing filter

may be obtained by the following expression



28

T

1 I T T TA = At - E A t+ I + 1, + 2, ...,L - (2.3.9)

2

where As is the filtered value at time t, At is the original input

value, T is the filtering interval and L is the total number of data

points equal to twice the filtering interval. In this data processing

system, T is the total number of the data in one block (i.e. 8192)

while L = 16384.

2.3.2.2 Filter Shape for Moving-Average and Differencing High Pass

Filter

The filter shape for the moving-average and differencing high-

pass filter is obtained from Eq. (2.3.8) by subtracting from unity

I(f) = 1 - (sinft)2 (2.3.10)

which is shown in Fig. 5.

The moving average and differencing filter obviously has the draw-

back of failing to provide the trend values for the first half in the

first block of the sample and for the last half in the last block of

the sample. It is not a great loss to have to forego the initial

data values at the beginning of the first block, but the absence of

trend values at the end of the last block is a serious handicap if we

want to extrapolate into the future for forecasting.
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2.4 Coordinate Transformation

Four new, mean-rQmoved time series ai, i=1...,4 have been created

after having applied the moving-average and differencing high pass

filter to the original raw observations. When i = 1,2 or 3, ai repre-

sents the fluctuating velocity components in the sensor oriented co-

ordinate system, and when i = 4, ai denotes the fluctuating temperature.

The sample probe yaw angle as calculated in Eq. (2.1.12) will be

used in the calculation of coordinate transformation of the values of

sample means, sample variances and covariances from the TSI or sensor

oriented coordinate system to the mean wind direction xyz. The x-

direction is the intersection of the vertical plane, which includes

the total wind vector, with the horizontal plane. The y-direction is

in the horizontal plane perpendicular to the x-direction and z-direc-

tion is vertically upward.

2.4.1 Variance and Covariance in each Block

The filtered time series should have a near zero mean value,

so variances and covariances in the blocked subseries m, m = 1,2,...,

M-l can be calculated by using the fol-lowing definition

--.a =- a(k) a.(k), i,j = 1,..4 (2.4.1)

where ai, i = 1,..,4 represents the filtered time series. Equal subs-

cripts I = j in the above equation represent the variances while unequal

subscripts i 0 j denote the covariances. The total number of blocks
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have decreased by one due to the application of moving-average and diff-

erencing high-pass filter.

In order to correct the values of the block variances and co-

variances of the time series, the filtered time series for each block

should have exactly zero mean value. In this case, the following

relationship should be used

- 1i n -m 
aa = - 1 ai(k) a(k) - ai a , i,j=l,2,...,4 (2.4.2)i n k=l 1 .i 1 (2 )

where the block mean value of the filtered time series is calculated by

m = n
Zn k=lE ai(k) , i = 1,2,...4 (2.4.3)

1 n k=1

and m denotes the block number.

Covariances of two time series measures the covariation between

the related time series. The covariance will have zero value if the

two time series are not related.

2.4.2 Sample Mean Values

The values of the sample means for the four time series have

been calculated previously in Eq. (2.1.11) by using the unfiltered

observations. The sample variances and covariances are calculated from

the filtered series ai, i = 1,2,...,4 by using arithmetic average

of each blocked values as follows

1 m
alaj = - E aia m i,j=l,..,4 (2.4.4)

m=l
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where superscripts m = 1,.., M-1 denotes the number of blocks to be

averaged.

The sample variances and covariances for the filtered time series

ai, i=l,..,4 with exactly zero mean value are calculated from

M-1
aia = -- Z aia . i,j=1,2,..4. (2.4.5)

aial m=

2.4.3 Mean Wind Direction Transformations

The statistical quantities of interest should be expressed in the

mean wind direction, therefore transformation of all the values of

sample mean, sample variances and covariances are to be performed from

the sensor oriented coordinate system to the mean wind coordinate

system. Since the covariances between fluctuating temperature and

three fluctuating velocity components are also important, a new trans-

formation 4 x 4 matrix is obtained by combining the relations in Eqs.

(2.1.4) and (2.1.6) as follows

E11  E12  E13  0

E21 E22  E23  0
Eij = (2.4.6)

E31 E32  E33  0

0 0 0 E44

where E11 = 0.57735 cosB

E12 = 0.57735 sinB

E13 = -0.8165
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E21= 0.57735 cos8 - o.70711 sineg

E22 = 0.57735 sing + 0.70711 cos 8

E23 = 0.40824

E31 = 0.57735 cos8 + 0.70711 sing

E32 = 0.57735 sino - 0.70711 cosg

E33 = 0.40824

E44 = 1.0.

The values of mean velocity components and temperature, variances

and covariances in the mean wind dfrection can be obtained by the

following transformations

i = Eki Ak i = ,..,4 (2.4.7)

and

Uiu = EkiE aka a , (2.4.8)

where the first three subscripts represent the three velocity com-

ponents in the mean wind direction and the last subscript represents

the temperature. The variance of temperature fluctuations in the

sensor oriented coordinate system should be invariant under the

coordinate transformations since temperature is a scalar quantity.



CHAPTER III

SPECTRAL ANALYSIS

The estimates of spectral density functions and other spectral

characteristics associated with stationary multiple time series are

considered necessary in order to study the physical properties of the

phenomenon in terms of its behavior in the frequency domain. The

power spectrum shows how the variance or average power of the time

series is distributed over the entire frequency range. The cross-

spectrum describes the relationship between two time series in the

frequency domain through determining the coherence function. Since

the cross-spectral density function is a complex function, it can

be expressed in terms of a real part (co-spectral density function)

and an imaginary part (quadrature spectral density function).

3.1 Methods of Analysis

In general, three different methods may be used to compute the

power and the cross spectral densities. Each of the three methods is

based on a different but asymptotically equivalent approach. These

methods are

a. the indirect or Blackman-Tukey method which takes the Fourier

transform of the auto- or cross-correlation functions of the time

series to obtain the required spectral density functions.

b. the direct or fast Fourier transform method calculates a quantity

33
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which is the direct Fourier transform of the time series. This

quantity is then squared to obtain the spectral density functions.

c. the filtering method can be used either on a digital or analog

computer to obtain these spectral density functions.

These three methods should turn out comparable results but these

results are not necessarily identical, even if the same effective

bandwidth at a given frequency is used. The three methods are suitable

for computations of spectral density estimates, but they possess similar

problems related to bandwidth, leakage, and statistical variability.

3.1.1 Indirect or Blackman-Tukey Method

This method requires the computation of the auto and the cross

correlation functions before taking their Fourier transforms to obtain

the spectral density functions. If the sampled observations {aj) and

{bj} j = 1,2,...,n come from two discrete time series with zero means,

then auto- and cross-correlation functions can be calculated

respectively as follows

1 n-k
Caa(k) = z at at+k, k > 0 (3.1.1)

t=l

and

1 n-k
Cab(k) - E at btk > 0 (3.1.2)n t=l t t+k
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The power spectral density function of the discrete time series

{a.} , j=1,2,...,n is estimated by

L-l
Ga(f) = 2At {C (0) + 2 E C (k)W(k)cos2rfkAt},a aa k=l aa

0 < f < (3.1.3)2At

where W(k) is the lag window with truncation point L. The selection

of an optimum lag window and best truncation point is usually done by

trial and error procedures.

The cross spectral density function for a stationary bivariate

time series {a j and {b } , j=1,2,...,n consists of a real part of the

cross spectral density function called cospectrum and an imaginary part

of the cross-spectral density function called quadrature spectrum.

Respective estimates of these spectra can be calculated as follows

L-1
Coab(f) = 26t {~ab(0) + 2 L ab(k)W(k) cos2nfkAt}

k=l

0 < f < 1 (3.1.4)2At

and

L-1

Qab(f)= 4At qab(k)w(k)sin 2nfkAt,
k=l

0 < f <- (3.1.5)
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where zab(k) is the even part of the cross correlation function Cab(k).

That is

1
tab(k) = T(Cab(k) + Cab(-k)), (3.1.6)

and qab(k) is the odd part of the cross correlation function, namely

qab(k) = 2 (Cab(k) - Cab(-k)). (3.1.7)

The cospectrum describes the in-phase relationship of the two

time series, while the quadrature spectrum depicts the out-of-phase

relationship. The quadrature spectrum assumes zero value if the cross

correlation function is even. The occurrence of a maximum correlation

between the two times series {aj} and {bj}, at a non-zero lag will

produce an odd function for Cab(k).

The calculations of auto- and cross-correlations in equations

3.1.1 and 3.1.2 involve a computational loop which is mainly a

multiply-add operation, requiring execution time in modern high-speed

digital computers of the order of seconds for just one single value

for the time lag. In many physical applications, the number of time

series to be analyzed can run into a fairly large number. Because of

the time constraint, it is almost impossible to use this method to

handle experimental records which run for half an hour and have a sample

rate of 200 samples per second. As a result, alternative methods

should be used for the spectral calculations of time series representing

the ground level atmospheric turbulence.
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3.1.2 Direct or Fast Fourier Transform Method

Instead of calculating the correlation functions, this method uses

the Fourier transformation of the discrete time series {aj}, i =

1,2,...,n directly. First one has to obtain the following quantity

n -i2Tfj/n
Hf = At aje W(j), f = O,l,... ,n-1, (3.1.8)

j=l

where W(j) is the data window. Hence the power spectral estimate is

obtained as follows

2 *
Ga(f) n;t Hf Hf (3.1.9)

where Hf is the complex conjugate of Hf. Equation (3.1.9) may also be

written as
2 2n

Ga(f) = IHf , f = 0,12... + 1. (3.1.10)

The introduction of the fast Fourier transform method makes the

direct method extremely attractive in spectral density calculations.

The detailed description of the application of the direct method in

estimating power and cross spectral density functions is discussed in

section 3.6.

3.1.3 Bandwidth Filtering Method

For a specific frequency index k, it is necessary to assign

frequencies {fk } and bandwidth {Bk} as follows

0 < fl < .°° f k 1 2At

where At is the sampling interval. The bandwidth {Bk} of a narrow band-

pass filter may be described in three different ways, namely, the

half-power point bandwidth, the noise bandwidth, or the equivalent
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statistical bandwidth. For the half-power point bandwidth {Bk} used

in this section, it is the frequency interval between the upper and

lower frequencies where the filter attenuates an applied signal by 3 db

below maximum transmissibility [6].

A separate bandpasS filter, such as Chebyshev sine bandpass

filter or Butterworth sine bandpass filter [67], is designed for each
Bk

k. The filters have their half-power points at (fk -) and
Bka

(f + 2-) hertz. More specifically, the distance between the two half-

power points is set to be Bk hertz and fk is located midway between them.

Let the output of the kth filter be denoted by q (k), i=l,2,...
which is filtered by using each of the filter k, then

(k) h(k) q k) (k)
(k) = l .j +g a. (3.1.11)

qi j=l J -J j=l J'

where hj and gj for j=1,2,...,L are the chosen filtering functions with

total number of t weights. In practical numerical computations, it is

noted that some input values a i and output values q-i are necessarily

set to zero initially. The power spectral density function is obtained

by

I n (k)12Gk Bk [q k) (3.1.12)
k i=1

which means that the data are passed through a bandpass filter, squared,

summed and finally normalized with the proper units.
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3.2 Sampling Considerations for Random Data

For the purpose of statistical analysis, most continuous sample

records should be read at some fixed interval At and converted into

digitized records for numerical calculations. Sampling defines the

points at which the data are to be observed. Corresponding relation-

ships exist between a random time sample record a(t) defined for the

time interval from 0 to T seconds and its Fourier transform G(f) de-

fined over a range of frequencies from 0 to F. However, both sample

records a(t) and its Fourier transform G(f) are restricted by their

respective time and frequency properties. Proper considerations should,

therefore, be given to these problems in order to obtain better estimates

of the spectral density functions.

3.2.1 Resolution Difficulties

Resolution is defined as the degree to which the true spectrum

shows its narrow and tall peaks. Time and frequency are related inversely

as can be seen from their physical units. The actual record lengths

are finite instead of infinite in extent and the frequency bandwidth

Af is also of finite width instead of near zero width. Due to this

resolution problem, additional errors will be encountered in the estimates

of the spectral density function.

For a fixed record time T, the estimate of the power spectral density

function might be improved by taking the frequency bandwidth Af by the

following relationship

T Af > C (3.2.1)
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where C is a fixed constant. For a fixed record time T, values of

Af which are too small will violate this uncertainty principle.

One should attempt to increase T and at the same time decrease Af

without corresponding increase in record length T will reduce the

statistical reliability of the spectral density estimates. A decrease

in bandwidth Af will improve the resolution but has to trade for

statistical reliability. A compromise between a reasonable bandwidth

and statistical reliability is, therefore, necessary.

3.2.2 Aliasing Errors

The question of the "aliasing" error arises as a result of

sampling the data a(t) at equal intervals of time At and later confusing

some of the higher frequency contents in the original frequency space

with the lower frequencies as can be seen in Fig. 6. The aliasing can

easily be avoided electronically in the experimental system by filtering

the signal before sampling so that the power above the maximum fre-

quency fs is effectively removed. In digital data computations, care

must be taken to avoid the occurrence of aliasing.

If a data sample a(t) is sampled at equal intervals of time by

At - 2fs  (3.2.4)

then fs, which is called Nyquist frequency, is the highest frequency at

which spectral data can be attained without introducing aliasing

errors. Any frequencies present in the data which are integer multiples

of Nyquist frequency fs cannot be distinguished from fs. For the

frequency f = nfs and At = 1 it is seen that2fs
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sin2nfat = sin2n(nfs)(-) = 0, for all n=1,2,.... (3.2.5)

Similarly, the energy at an arbitrary frequency f cannot be

separated from energies contributed by different frequencies such as

f ± fs, f ± 2fs, ... , f ± nfs, (3.2.6)

and

sin 22nfAt = sin 22r(f + nfs)(2 -), for all n=1,2,.... (3.2.7)

Thus, if frequencies higher than the Nyquist frequency fs are

actually presented in the data, they will contribute their energies

to lower frequencies with consequent errors in power spectral density

estimates at these lower frequencies.

To avoid this aliasing problem, one should choose the sampling

frequency fs and sampling rate At in such a way that

1 1

t -2fs - 2fmax, (3.2.7)

where fmax is the maximum frequency for which the data will be

analyzed. It may also be written as

fs - fmax • (3.2.8)

It is, therefore, concluded that the time interval between

successive samples should be such that the sampled data contain at

least two samples per cycle of the highest frequency of interest. In

case extraneous noise is present in the data samples, ten to twenty
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samples per cycle of this highest frequency are considered practical

unless the high frequency noise can be filtered off before the data

are sampled.

The effect of aliasing on the integral Fourier transform of a

function a(t) can be shown as follows

G(f) = Ia(t)e-i27ftdt (3.2.9)

where i = /-T and its inverse Fourier transform is

a(t) = G(f)ei27ftdf . (3.2.10)

The effect of sampling at finite intervals, evaluated at the

points tj = jAt, j = 0, ± 1, + 2, ... and F = 1 can be seen as

follows

r _ 0 (K+1)F

a(tj) = G(f)e F df = z G(f)e F df. (3.2.11)
K=-o

-W KF

The exponential function in the integrand of Eq. (3.2.11) is a

periodic function of frequency f in the region from f = 0 to f = F,

so it may be written as

F J-i2Gf jf

a(jAt) = Gp(f)e F df (3.2.12)

0
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where Gp(f) is the spectral density function with periodic function

f such that

Gp(f) = i G(f + Kf) . (3.2.13)
K=-c

The Gp(f) is different from the spectral density function G(f)

defined in Eq. (3.2.9) because Gp(f) is the sum of the G(f)'s dis-

placed by all multiples of F. This error is referred also as

"aliasing" in the frequency domain.

3.3 Tapering Function - Time Domain

The selection of a tapering function is in many respects analogous

to an engineering design of an electrical filter. Tapering is to

multiply the time series by a data window, analogous to multiplying

the correlation by a lag window in the indirect or Blackman-Tukey

method. The method of using various lag windows to obtain smoothed

spectral estimates have already been well established [77]. The

problem of tapering the time series has not been thoroughly studied

although different data window functions have been proposed [105].

By adopting the direct or FFT method for spectral estimation,

emphasis will be placed on the use of data windows or tapering

functions. The purpose of using a tapering function is to provide a

slightly wider spectral window than would be obtained if a straight-

forward harmonic analysis is used. From the time domain viewpoint,

tapering is to round off potential discontinuities at each end of the

time series. In the frequency domain, tapering is to suppress large
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negative side lobes in the power spectrum. In general, tapering will

change the mean and variances of the data sample since unequal weights

are given to different portions of the time series. In effect, some

data are lost and as a result degrees of freedom are lost. A scale

factor is therefore necessary to compensate this difference in order

to obtain the accurate spectral estimates.'

3.3.1 Cosine Taper Data Window

It is essential that the mean is removed from the data before the

data window function is applied. Bingham et. al. [9] proposed a data

smoothing function consisting of a short left-half cosine bell, a

long constant and a short right-half cosine bell. Later they proposed

a data window to taper both ends of the time series with the cosine

bell each of which contains one tenth the time of the total sample

time. The data between these cosine bells are multiplied by unity.

This data window is called cosine taper data window and may be expres-

sed in the following form

Wt (-) (1 - cos O.lT) 0 < t < 0.1T

Wt = 1 0.1T < t < 0.9T
I T(T-t)- (3.3.1)

Wt = (t) (1 - cos O.T )) 0.9T < t < T

(or 0 < T-t < 0.1T

where T is the total sample time. The corresponding smoothed filter

shape Ct(f) which can be used in conjunction with FFT, is shown in

Fig. 8. This function is the Fourier transform of the data Window

Wt, as is shown in Fig. 7. The CT(f) has a wider main lobe with
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suppressed side lobes so as to reduce any possible power leakage and

to prevent negative power estimates.

The general form of the cosine-taper data window of Eq. (3.3.1)

may be written as

Wt = ( - cos 10 t) (3.3.2)

or
or 10t 10rt

1  1 1 T
Wt - [ NeV T 

or
or Ot 20rt 1 Ort

Wt - - e T - Tie T (3.3.3)4 4

From the numerical coefficients inside the bracket of the above

equation, it is seen that the cosine-bell data window is simply an

extension of the Hanning weighting function with coefficients

(1, 1, ) for frequency domain smoothing.

3.3.2 Other Data Windows

There are few other proposed data windows [105] but they have not

received wide attention. Their application in any practical problem

has not been attempted. In applying these windows to the atmospheric

turbulence data, the results predicted are generally lower in value

as compared to those using cosine-taper data window which was discussed

in the previous section. A brief discussion of these windows is

presented in the following section.
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3.3.2.1 Window No. 1

Welsh [105] proposed a data window which is expressed by the fol-

lowing function

wl(t) = 1 - n+l 2  t = 0,l,2,...,n-l. (3.3.5)
2

The resulting spectral window corresponding to the data window

(3.3.5) is given approximately by

Wl(f) _ 1 2 [sin(n+l)wf _ cos(n+l)rf]} 2  (3.3.6)
nU' 7r2 (n+1)f 2  (n+l)rf

where
1 n-l 2

U' n w (t) (3.3.7)
t=0

and n is the total number of data points used in the computation and

can be considered as a scale factor. To change n will mean a variation

of the shape of the spectral window, Wl(f), by expansion or compression

of the extent of the independent variable f.

The half-power width is given by

1.16Alf= 1.1-- . (3.3.8)

When the same half-power width is used for comparison, the spectral

window, Wl(f) turns to be almost identical to the spectral window as

proposed by Hanning [101.
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3.3.3.2 Window No. 2

Welsh [105] also proposed another data window but it has a

different shape as compared to window No. 1.

n-i

w2 (t) = 1 - n t = 0,l,2,111,n-1 . (3.3.9)

The resultant spectral window W2(f) is again obtained by applying

Fourier transform to the data window w2(t) and can be expressed as

follows

-2
1 n+l sin 2{(n+l) -}

W2 ) hU' 2 2 (3.3.10)

where

n-I 2
n Z w2 (t). (3.3.11)
t=0

Changing the total length of the data set will again result in

the change of the shape of the spectral window function W2(f) by

expansion or compression of the extent of the independent variable f.

The half-power width is found to be

1.28 (3.3.12)

When this half-power width is used to compare the shapes of the spectral

windows, W2(f) is found to be very close to Parzen's spectral window

[511], which possesses large negative side lobes. The presence of
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negative side lobes in the spectral window function has great dis-

advantages since prediction of negative power spectral density function

may occur.

3.4 Smoothing Function - Frequency Domain

The smoothing of the spectral estimates in the frequency domain

may be achieved by either averaging the estimates at the corresponding

frequency points of segmented subseries in a time series (segment

averaging) or averaging the spectral estimates among neighboring points

in the spectrum function (frequency smoothing). The combination of

both segment averaging and frequency smoothing may be applied to obtain

a smooth spectral estimate. This type of smoothing is referred to as

combined averaging.

A plot of the individual power estimates versus frequency for a

one half hour sample will be next to impossible. Even the plotting

of spectrum functions which are smoothed using the segment averaging

method will show many small individual peaks. These small peaks and

valleys are insignificant in the explanation of the turbulence

structure, because they may represent sampling fluctuations rather

than any systematic physical variations. Frequency smoothing may

average out these peaks in order to obtain a more useful representation

of the spectrum but has limitations as far as the resolution is con-

cerned. However, for a long time series covering nearly four decades

on the frequency scale, the resolution is generally two or more orders

of magnitudegreater than actually required [691.
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3.4.1 Segment Averaging

The data sample of one half hour duration has been previously

blocked into M different subseries each of which has n data points.

The total number of blocks has been reduced by one as a result of

applying the moving-average and differencing high-pass filter. By

using the fast Fourier transformation technique, there will be M-1

number of blocked spectral estimates each of them of length n. The

M-1 spectral estimates are averaged over corresponding frequencies

to obtain a smoothed spectral estimate given by

M-1
G(fi) M1 GK(fi) i = 1,2,...,n . (3.4.1)

M-1 K=l

The application of segment-average smoothing will increase the

effective resolution bandwidth Be depending on the number of blocks

to be averaged. The spectral window before applying the segment
1

averaging was triangular in shape with Be = 1. After applying the

segment averaging, the spectral window is still triangular in shape

except the effective resolution bandwidth Be will be wider (i.e. Be =

M-) as shown in Fig. 9. The spectral estimate (fi) in Eq. (3.4.1)

may be considered as representing the midpoint of the frequency inter-

val covered by Be. A total of n spectral estimates can be obtained.

3.4.2 Frequency Smoothing

After averaging the a neighboring spectral estimates of the power

spectrum,.the new spectral function can be expressed in terms of the

original one as follows
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(fK) = G(fi) K = 1,2,...,n

where a is the number of neighboring frequency components to be aver-

aged and n is the total number of original spectral estimates. The

spectral window before frequency smoothing was triangular in shape with

the effective resolution bandwidth Be = T . After frequency smoothing,

the spectral window will be trapezoidal in shape with much wider ef-

fective resolution bandwidth (i.e. Be = r) as shown in Fig. 10. The

spectral estimate may be considered as representing the midpoint of the

frequency interval from fK to fK+Z-l, where K denotes interval number.

3.4.3 Combined Averaging

The smoothing of spectral estimates can be achieved more effective-

ly by first applying segment averaging followed by frequency smoothing

which is known as combined averaging. As a result of applying the

combined averaging technique for smoothing of the spectral density esti-

mates, the final effective resolution bandwidth becomes much wider and

can be approximated by

Be - T (3.4.3)

where M is the number of blocks to be averaged and a is the number of

averaged spectral estimates and T is the total sample time. The number

of degrees of freedom y is

y = 2BeT = 2M, (3.4.4)

which can be interpreted as the total number of real and imaginary

components within the bandwidth, Be. Since each of the spectral esti-

mates is in itself a Gaussian random variable, the squaring and
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adding of them will produce a Chi-square distribution. The broader

effective resolution bandwidth gives the reduced normalized standard

error which will be explained in the next chapter.

3.4.3 Proposed Frequency Smoothing Technique

The frequency smoothing is usually done by choosing an equal

number of neighboring frequency components of the spectral estimates

to be averaged. This technique is effective only if the power spectral

density estimates are distributed evenly throughout the whole frequency

range of interest. If the power spectral density estimates are con-

centrated either in the low or in the high frequency range, a new

frequency smoothing technique is proposed in order that more informa-

tion is to be obtained in the range of interest.

In order to obtain more spectral information in the lowest

frequency range of the atmospheric turbulence spectrum, it is proposed

that the total number of spectral estimates after segment averaging

be separated into different averaging regions.

Since the power spectral estimate at zero frequency is of no

significance for reliable analysis, the smoothing starts with the

second value of the spectral estimates after zero frequency.

The power spectral density estimates at the lowest frequency

range have been obtained by only going through segment averaging

(i.e. a = 1, n = 8 in Eq. (3.4.2)). The average value a used in the

frequency smoothing method is chosen in a manner of geometric progres-

sion (i.e. t = 20,22,24,....). For different values of 9 different

spectral estimates will be obtained as expressed by the following
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9:I,

G(fk) = 1 Gi(fk) k = 1,2,...,8 , (3.4.5)
Si=1l

2 = 4,

1
G(fk) = 9 Gi(fk) k = 9,10,...,38 , (3.4.6)

i=1

= 16,

G(fk Gi(fk) k = 39,40,...,62 , (3.4.7)
i=l

a = 64,

G(fk) 1= Gi(f k) k = 63,64,...,86 , (3.4.8)
i=1

and a = 256,

^ 12
G(fk) = . Gi(f k ) k = 87,88,...,94 . (3.4.9)

i=1

In this case, 4097 unique values of spectral density estimates Gi(fk)

have been used to obtain 94 final smoothed spectral density estimates

G(fk). The overall filter spacing for this proposed frequency smoothing

technique is shown in Figure 11.

3.5 Fast Fourier Transform

The fast Fourier transform (FFT) is an efficient and time saving

algorithm for the computation of the harmonic amplitudes in the

frequency domain from uniformly spaced input data points. It is used

to analyse the periodic phenomena of a time series as it converts to
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a frequency function. The time savings of this algorithm will permit

the reduction of operations by a factor of N2/N log 2 N if the number

of data points in the sample is a power of two.

Many widely used FFT algorithms involved bit-reversal procedures

to sort the Fourier coefficients into the proper order in the final

stages of the transformation. The bit-reversal procedures can also

be avoided if the input data have been sorted into different orders

so the output coefficients will be in the proper order.

Uhrich [99] developed a Fortran program without requiring bit-

reversal procedures but lacked a supporting theory. His algorithm

requires a 2xN array for variable storage in the computer rather than

a lxN storage for bit-reversal sorting. The required computation time,

therefore, is almost twice as long as is necessary.

A different algorithm for FFT calculations without bit-reversal

and sorting procedures together with complete mathematical formu-

lations will be presented in the following sections.

3.5.1 Properties of Fourier Transform

In order to understand the fantastic time savings involved in

FFT computations, some basic properties of the Fourier transformation

need to be explained. In processing digitized signals or samples,

the attention will be focused on the properties of the discrete finite

Fourier transform (DFFT). Some useful properties related to the

development of the fast Fourier transform will also be discussed.

Property 1: The Fourier transform transfers the N data points of

the time series (aO,al,a 2 ,...,aN-l) to the N-spectral values
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(HOH1,H2,...,HN-1) in the frequency domain, as defined by

N-1
Hr(f) = z an(t) Wrn r = 0,1,2,...,N-1 (3.5.1)

n=O

-i27r

where W = e N . A very similar equation defining the inverse finite

Fourier transform, which transforms the discrete spectral values back

to the original discrete time series can be written as

N-1
an(t) = E Hr(f) n = O,,2,...,N-1 . (3.5.2)

r=0

In case the digitally recorded data points a0 ,al,...,aN-1 are

finite but non-periodic (random), the sample values as defined by Eq.

(3.5.2) can be proven to be periodic and infinite as follows

1 N- H -r(n+N)
an+N(t)  - Hr(f) W

r=O

or

an+N(t) = N-rnSH(f) rn (WN ) (3.5.3)

r=O

where W is the Nth root of 1 or WN = 1, so (WN)-r = 1 and it follows

that

a N-I

an+N(t) = N c Hr(f ) W = an(t ) . (3.5.4)
r=O

Similarly one can prove that Hr+N(f) = Hr(f).
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Property 2: If the time series (a,al,...,aN-1) is real, then

the second part of its finite Fourier transform is equal to the

complex conjugate of the first part. The spectral values HO,H 1 . . .

HN-1 can be separated into two parts

HO'H1'H 2 ... ,HN HN  ,HN ... ,HN-1
2 22 2

First Part Second Part

It is necessary to prove that

HNj(f) = Hi(f) for 0 < j < N-i, (3.5.5)

where the star superscript refers to the complex conjugate. From Eq.

(3.5.1), one can write

N-1
HN-j(f) = E an(t) W(N-j)n. (3.5.6)

n=O

Using the property 1, Eq. (3.5.6) reduces to

N-i
HN-j(f) = I an(t) W-in. (3.5.7)

n=O

Now,

1 1 1
W- = W = 2r. 2rr (3.5.8)

cos-1 sinT-

or

-1 2r 2n *
W = cos7-+ i sin2-= W . (3.5.9)W CS~+ 5flN
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Hence Eq. (3.5.6) can be written as

N-1
HN.j(f) = E an(t)(WJn) (3.5.10)

n=O

For a real valued time series, an(t) = an(t) and Eq. (3.5.10) can be

written as

HN-j(f) = [- an(t) n = H.(f) .(3.5.11)

Property 3: The atmospheric turbulence data are always a sequence

of real numbers. By applying Fourier transformation we usually store

the actual (real) input in the real-part array of the computer and

zeros in the imaginary-part array of the computer. This requires

storage length of 2N and produces 2N components of N complex Fourier

coefficients. In fact, we used only N Fourier coefficients which

should take much less storage in the computer. By forming a complex

time series (Co,Cl,... ,N-1) from two real input time series

(aoal'...,aN- ) and (60,b 1 ,...,bN-1), one can perform Fourier trans-

formation utilizing complex input in a form of cr = ar + i br for

r = 0,l,2,...,N-1 and i = J-T . Then the combined spectral series

will be in the form of

Cr = Ar + i Br r = 0,1,2,...,N-1 (3.5.12)

where Ar and Br are both complex. Let
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A = "ar + i a2r

and (3.5.13)

Br = bi + i b2r

where alr,a2r,b1r, and b2r are real numbers.

By using property 2, one can write

CN-r = Ar + i Br (3.5.14)

where Ar and Br are complex conjugate of Ar and Br respectively.

Both Eqs. (3.5.12) and (3.5.-14) can be written in form of

Cr = (al r + i a2r) + i (bl r + i b2r)

and

CN-r (lr a2r) + i (blr - b2r )

Hence it follows that

Cr = (al - b2r ) + i (a2 + b1 ) (3.5.15)

and

CN-r = (alr + b2 ) + i (a2r - br) (3.5.16)

By combining Eqs. (3.5.15) and (3.5.16) one obtains

C - a r + i a2r = Ar (3.5.17)
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Cr - CN-r2iC -r  b r + i b2r = Br (3.5.18)

where Ar and Br, for r = 0,1,2,...,N-1 are the Fourier transform

values of the two real time series an and bn respectively. Both Eqs.

(3.5.17) and (3.5.18) can be written in more easily perceptive forms

as follows

(Cr(f) + CN-r(f)) (Cr(f) - CN-r(f))
Ar(f) = Re 2 + i Im 2

(3.5.19)

and

Im (C,(f) + CN-r(f)) Re (Cr(f) - CN-r(f)).
Br =Im - i Re 2

(3.5.20)

There are many other properties (i.e. circular convolution of

two time series) which may be found in most of the standard textbooks

on Fourier transformation.

3.5.2 Basic Theory of Fast Fourier Transform (FFT)

The basic theory of FFT was developed by Cooley and Tukey [19] in

a subtle way so that it was somewhat difficult to understand. The

main idea involved in the entire development was to continuously

reduce a time series into two final point functions. It may also be

illustrated by the principle of matrix factorization [34]. The theory

presented here is to illustrate in a simple mathematical form the

reasons for the time-saving capacities of this algorithm.
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In the sampled-data case, the discrete Fourier transform (DFT)

is defined previously by

N-lN-i -i2kr/NHr = z ake r = O,l,2,...,N-1 (3.5.21)
k=O

where Hr is the rth coefficient of the DFT and ak denotes the kth

sample of the time series which consists of N samples and i = r-T.

The definition of DFT is not consistent throughout the literature.

Some authors prefer to use Hr/N as DFT coefficients, others use

HrIVi. Thereforecare should be exercised in dodng the numerical

computations. The ak's in expression 3.5.21 can be either real or

complex but the Hr's are almost always complex. Eq. (3.5.21) may be

written in a simplified form

N-l
Hr = akrk r = O,l,2,...,N-l (3.5.22)

k=O

where Wrk = e-i27rk/N or W = e-i2 /N

3.5.2.1 Illustrated Example

To become more familiar with the discrete fast Fourier transfor-

mation as defined in Eq. (3.5.22), an example will be used to describe

this technique for 8 data points. For a random digitized time series

ak , k = 0,1,2,...,7 the Fourier transform of Eq. (3.5.22) may be

written as follows
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H0 = a0 + al + a2  + a3  + a4  + a5  + a6  + a7

H1 = ao + alW + a2W2 + a3W3 + a4W4 + a5W5 + a6W6 + a7W7

H2 = a0 + alW 2 + a2W4 + a3W6 + a4W + a5W2 + a6W4 + a7W6

H3 = a0 + alW3 + a2W6 + a3W1 + a4W4 + a5W7 + a6W2 + a7W5

H4 = ao + alW4 +a 2  + a3W4 + a4  + a5W4 + a6  + a7W4  (3.5.23)

H5 = a 0 + alW5 + a2W2 + a3W7 + a4W4 + a5W1 + a6W6 + a7W3

H6 = a + alW 6 + a2W4 + a3W2+ a4  + a5W6 + a6W4 + a7W2

H7 = a0 + alW 7 + a2W6 +la 3W5 + a4W4 + a5W3 + a6W2 + a7W1

where use has been made of the relations WO = 1, W8+n = Wn and W4 = -1.

It is clear that the complete calculations of Eq. (3.5.23) requires 64

complex multiplications and additions. Samples which consist of

thousands of data points would require an extremely large number of

computer computations and also require a large storage. But from Eq.

(3.5.23) some basic characteristics of the Fourier transform may be

recognized. Obviously, symmetry in the right hand side of these

expressions can be observed. The first equation in (3.5.23) is simply

the sum of all the data points.

The FFT method is essentially to divide the total number of data

points in half which gives two sequences and then dividing these

sequences in half again to give four short sequences each consisting

of two terms. It will be shown that the shorter sequences require

fewer operations than the longer sequences. It is profitable to

separate the original data points into two shorter sequences b.,
N

S= 0,1,2,...2 composed of only the even-numbered data points, and
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N
,  = 0,,2,...,2 composed of only the odd-numbered samples. Now

the discrete Fourier transform of the shorter sequences for the 8-data

points sample is given by

3
Br = z bkW2 rk r = 0,1,2,3

k=O

and (3.5.24)

3
C, = w ckW 2rk  r = 0,1,2,3 ,

k=O

where 2 = cos(2-) - i sin(4-). The computing time for obtaining the

Fourier coefficients Br and Cr, r = 0,1,2,3 is now reduced to 2(4)2

32. By expanding Eq. (3.5.24) one should see more clearly the ad-

vantages of separation of the long sequence,

B0 = b0 + b1  + b2  + b3  = ao + a2 + a4 + a 6

B1 = b0 + bl W2 + b2W4 + b3
W6

B2 = bo + blW4 + b2  + b3W4

B3 = bo + blW6 + b2W4 + b3W2
(3.5.25)CO = c0 + cl + c2  + c3  = a1 + a3 + a5 + a7

C1 = CO + clW2 + c2 W4 + c3 W6

C2 = co + clW4 + c2  + c3w4

C3 = co + clW6 + c2 w4 + c3w2

To illustrate the advantages of FFT more clearly, the spectral

values Hk, k = 0,l,2,...,N-l can be expressed in terms of spectral

values Bt and Ca , = 0,,... as follows2sfllw
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H0 = BO + CO

Hl = B1 + WC1

H2 = B2 + W2 C2

H3 = B3 + W3 C3
(3.5.26)

H4 = B0 + W4 C0

H5 = B + W5 C1

H6 = B2 + W6 C2

H7 = B3 + W7 C3

Now the sequences bt and cz, a - 0,1,2,3 can be further halved to

obtain four short sequences of two terms each. They may be written as

follows

Dr = z d W4r j  r = 0,1
j=0

4rjEr = z e jW r = 0,1
j=0

(3.5.27)

1 4rd
Fr = z fjW4 r J  r = 0,1

j=0

1 ,4rj
Kr = E k W r = 0,1

j=0

By expanding Eq. (3.5.27), they are given as follows
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DO = dO + d1  = a 0 + a4

D1 = dO + dlW4 = ao + a4W4

EO = e0 + el = a2 + a6

El = e0 + el W4 = a2 + a6 W (3.54 28)
, , (3.5.28)

F = f + fl = al + a5
, ' 4 a W4F1 = f + f1W4 = al + aW

K; = ko + kI  = a3 + a 7

K1 = kO + kW4 = a3 + a7 4

Combining Eqs. (3.5.25) and (3.5.28), the spectral values Br and

Cr , r = 0,1,2,3 may be expressed in terms of the four short spectral

sequences as follows

BO = DO + E0

B1 = D1 + EW2

B2 = DO + EOW4

B3 = Dl + ElW6  
(3.5.29)(3.5.29)

CO = FO + K0
' 2

C1 = F1 + K1W

C2 = FO + KW4

C3 = F1 + KW6

where relations W8 = 1 and W10 = W2 are used. Therefore, the basis to

calculate the finite Fourier transform of a time series ak, k = 0,1,2,

...,7 is to use the sets of equations (3.5.28), (3.5.29) and (3.5.26)

in this order.
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The example illustrated above gives the basic reduction procedures

needed to calculate the finite Fourier transform of a time series with

eight data samples. From Eqs. (3.5.26), (3.5.28) and (3.5.29), each

one of them requires 8 complex multiplications and additions. Thus

the finite Fourier transform calculations can be achieved in a total of

24 complex multiplications and additions. Using the straight forward

calculations in Eq. (3.5.23), a total of 64 complex multiplications

and additions are required.

The reduction of the time sequence can be carried on as long as

each reduced data sequence has a number of data points that is divisible

by two. This FFT technique can be generalized to handle a time series

of any length N as long as N = 2p, where p is any integer larger

than 1. The number of complex multiplications and additions is pN

instead of N2 , and therefore since always p < N the number of calcu-

lations is drastically reduced.

In sunmary, the basic steps for using FFT algorithm to perform

spectral calculations for a time series with N = 8 may be written as

follows:

1. Use Eq. (3.5.28) to calculate the spectral values (DO, D1, E0,

E1, FO , Fl, K;, K1). These eight values may be stored in the position

(complex) occupied by the original data values for they are no longer

needed.

2. Use Eq. (3.5.29) to calculate the new set of spectral values

(BO, B1, B2 , 83, CO, C1, C2, C3).
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3. Use Eq. (3.5.26) to obtain the required finite Fourier

transform set of spectral values (HO , H4 , H2, H6, H1, H5, H3, H7).

It is seen that these spectral values are not arranged in the

required order. A bit-reversal procedure is therefore necessary to

align them in the proper order.

3.5.2.2 Mathematical Formulations

There is a large number of fast Fourier transform algorithms and

computer programs available, the details of their computations are

difficult to understand. It is therefore advantageous to develop a

new algorithm based on the original theory presented by Cooley and

Tukey [19]. The general mathematical formulations for FFT without bit-

reversal procedure are presented in this section. A computer program

based upon the mathematical formulations of FFT is developed and pre-

sented in the appendix.

From the definition of the discrete Fourier transform in Eq.

(3.5.22), r may be expressed in the form of

r = p-12p-l  p 2p-2 + + j222 + j12 + j 0  (3.5.30)

where jt = 0 or 1 for all k.

The time series ak, k = 0,1,2,...,N-1 can be separated into two

time sequences each containing half of the total number of data points,

thus Eq. (3.5.22) becomes

N -1 kr N-1 kr
Hr E akWON + E akWO (3.5.31)

k=O k=N 1
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where WO = i = T, N1  2 - and p is the total number of

times necessary to reduce the time series into two-point functions.

By changing the summation limits in the second term on the right hand

side of Eq. (3.5.31), it may be written as

N1 -1 r rk
Hr = [ak + ak+NiWO2 ] W02Nl (3.5.32)

k=O

Furthermore, Eq. (3.5.30) can be rearranged as follows

r - j 0  p2 P- 3

2 - 2 p - 2 + jp-22  + ... + j22 + j r1 . (3.5.33)

Substituting the newly defined value rl in Eq. (3.5.33) into the Eq.

(3.5.32) one obtains

"N-I O' J o k  rlk
S 1 N21- ON W (3.5.34)

Hr = E ak + ak+NlWO , (3.5.34)

where use has been made of the fact that Wn = 1 for the integers

n = 1,2,...,p. Eq. (3.5.32) may again be written as

rlk

Hr = a2k+jO N1  k = ,2,...,N- (3.5.35)

where
j0  j0k

a2k+i0 = {ak + ak+N 1WO2 W0 N. (3.5.36)
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By using similar procedures, Eq. (3.5.35) can be further reduced

into another set of time sequences as follows

Nlk r k

Hr  E a2k+j0W0 + IN a2k+j0 01
2 ( rlk  r l ( k+ N2 )N2-1 (1) N2-1 (1) N

Sk= a2k+jW 0 + kE a 2k+j0+N 1k=0 k= 2k+ 1

or j1k r2kN2-1 (1) (1) N1 N2Hr = k a2k+j0 + a2k+j0+NWO W0 (3.5.37)

N1 2p - 2  Nwhere N2  2 = 2

2 1
r2  2 pl p 3  .2 2 + ' +j 3 2 + j 2

WO = (-1) .

Eq. (3.5.37) can again be written as

r2k
N2-1 a (2) WN2

Hr = k= 4k+2j1+j 0 k = 0,1,2,...,N2 -1 (3.5.38)

where Jlk

(2) . (1+) (1) (3.5.39)J
4k+2jl+j 0  a2k+j 0 + a2k+j 0+N (3.5.39)

By employing similar halfing procedures, a general form may be

developed through induction as follows
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rk
N-i i-

Hr = akWO
k=O

rlk
N1-1 (1) N1
k=0 a2k+jWO 0
k=O

r2k
N2-1 (2) N2
k0 a4k+ 2j1+jW

r3k

N3-1 (3) N3k=O0 a8k+4j 2+2jl+jo

pi) -2Np-l- (p-l) N
k-O a2P-1 k+2P-2p-2+2P-3jp-3+...+2jl+Jo W0

(3.5.40)

where p is the number of times the data sequences are decomposed into

shorter sequences.

By employing halfing procedures a total of p times, one obtains

the following expression

rk
N -1 (p) P

r k=O a2 Pk+2P-ljp-1+2jp-2 p-2+...+2j+j 0 
ONp

k = 0,1,2,...,Np-1 (3.5.41)

where
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(p)
2k+2P-lj p-1+2P-2jp-2+.. +2j 1 +j0

1 1p-lq
E (-I)p a 2P- W Npl

q=O k+2p-2p+2p-3jp-3+...2jl+j 0 +qNp- 1

Np = N2 = 2.

The summation limit in Eq. (3.5.41) is no longer in existence if the

time series of 2p data samples is halved continuously a total of p

times. Thus, Eq. (3.5.41) can be written as

(p)  (P)Hr = a 2P-ljp1+2-2p2..+2 ar (3.5.42)

which is the final result of a single point transformation.

The previous mathematical developments may also be written in

another form of notation so as to be able to grasp more clearly the

ideas involved in developing the FFT computer program. In general,

Eq. (3.5.22) may be written in the following form

N-1 rk
H(r) = k a(kp k p- 2 , . . . , kl k O)WO

N  r = O,,2,...,N-1

(3.5.43)

where r and k is expressed by
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r = 2P-jp-l + 2P-2p-2 + ... + 2jl + j 0

(3.5.44)

k = 2P-lkp- 1 + 2p-2 k + ... + 2k1 + kO

and ki and jk take on values for 0 and 1 only, for all k.

Expanding the exponential term on the right hand side of Eq. (3.5.43),

it gives

rk

W 0N = wor2P- kp-'/N work )/N

rk(l)
= w0 oJkp-1/ Wo(2P-l 1jp-+...+2jl)2P-lkp-1/N W0N

= woJOkp-1/2 WOrlkp-I woJOk(1)/N wOrlk(1)/N 1  (3.5.45)

where N1 = = 2p-

r-j 0
Sr 2 2 P-2p-l + 2 P-3jp- 2 + ... + 2j2 + jl

and (3.5.46)

k( 1 ) = 2P- 2 kp_ 2 + 2P- 3 kp_ 3 + ... + 2k1 + kO •

Equation (3.5.43) may be expanded into the following form

1 1 1 1
H(r) = E E ... E a(kp-l ,kp-2 ,... ,kl ,kO )ko=O k1=O k2=0 kp-l=O

WOjOkpl/2 jOk(1)/N WOrlk( 1 )/Nl (3.5.47)

where W0 rlkp- 1 is unity due to the fact that both rl and kp l assume

an integer value.
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Equation (3.5.47) may be written as follows

1 1 1 1
H(r) = z z z ... E al (kp-2 ,kp-3 ...,kl ,kO ;j O )

kO=0 kl=0 k2=0 kp-2=0
rlk(1)

WO N1  (3.5.48)

where al(kp-2,kp_3,...k 1,ko;jo )

1 j0kp-1/2 jok( )/N
= a(kpWl ,kp-2,... k ,k0) W0

kp-1=0

(3.5.49)

Similarly, by letting

a2(kp-3,kp-4,...,kl,kO;jl , 0 )

1 ilkp- 2 /2 j1k(2)/N 1
= E a (kp-2,kp-3,.-,kl ,kOo)WO Wo (3.5.50)

Eq. (3.5.47) may be further reduced to

1 1
H(r) = E ... a2(kp-3,kp-4,...,kl,ko;JlJ 0)

kO=O kl=0 kp-3=0

W0r2k(2)/N2 (3.5.51)

where N2 = - p-2
N2 2 9
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r2 = 2P-3jp- + 2  p- 2 + ... + 2j 3 + (3.5.52)

and

k(2) = 2P-3kp_3 + 2P-4 kp- 4 + ... + 2k1 + k0 •

In general, by letting

aq(kp-q-lkp-q-2,...,kl,kO;jq-lJq-2,..il'j O )

1 jq-1kp-q/2

k E. aq-l(kp-q,kp-q-l,...,kl,ko;Jq-2,Jq-3,'"3,JljO)Wo
p-q

jq-lk(q)/Nq-1 , for q < ,p (3.5.53)

the general form of the Fourier coefficientsmaybetwritten as

1 1 1
H(r) = c z ... I aq(kp-q-1kp-q-2,.,k,k0=

kO=0 kl=O kp-q-l=O

jq-l'Jq-2"'" jl *,Jo)Worqk l)/N (3.5.54)

where Nq = -l= 2p-2

rq = rq-l 2 q- = 2p-q-1 p-1 + 2p-q-2jp_2 +

+ 2jq+l + jq (3.5.55)

and

k(q) = 2Pq lkp-q-1 + 2P-q- 2 kp-q- 2 + ... + 2k1 + kO •

For the case p = q + 1, Eq. (3.5.54) may be written as
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rp_1 k( p 'I ) / Np _
1

H(r) = k ap_(ko;Jp_2pp- -3 3... jlJO)Wo 1  p- (3.5.56)
k0

where p is the largest integer value of the time series with sample

length N = 2P. Further reduction of Eq. (3.5.56) gives

H(r) = ap(jp-lsjp-2,...,jljO)  (3.5.57)

which is simply the transformation into a single data sample.

3.6 Computing Techniques

The computational procedures using the FFT method for power and

cross spectra of multiple stationary time series is based on the re-

quirement that the total number of data points transformed to be

integer powers of two. If the blocked time series do not have this

required number of data points, zeros must be added to fill up the

series to the required number before applying Fourier transformation.

In case the calculated spectrum will be used to obtain the cor-

relation function, then the time series should be filled up with zeros

to obtain a total data points of 2p+l to start with. This new approach

of obtaining correlation functions by using two passes of Fourier

transformation has been considered to be more economical in comparison

with the direct multiply-add operations in obtaining the correlation

functions. These correlation functions can further be used to obtain

smoothed spectral estimates by applying the properly chosen lag

windows whose characteristics are more generally discussed in time

series analysis [51].
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The general procedures used in computing power and cross spectral

estimates via FFT are listed in the following two sections.

3.6.1 Power Spectrum

Reasonable power spectral estimates can be obtained for a time

series of length n = 2P by the following procedures:

1. Either truncate the excessive data or add zeros so the number

of data points for blocked time series ai", i = 1,2,...,n, m = 1,2,...,

M-l, to be transformed is n = 2P, where p is an integer and M is the

total number of blocks.

2. Taper the blockpd time series with a cosine taper data

window as discussed in section 3.3.1 or with another appropriate taper-

ing function as presented in section 3.3.2.

3. Compute the finite Fourier transform of each blocked subseries

by

n-l mtWrk
Hrm(f) = Z akt)Wrk r = O,1,2,...,n-1 (3.6.1)

k=O

-il2/n
where W = e and m = 1,2,...,M-1 is the block number.

4. Compute the absolute squared value scaled appropriately to

obtain the power spectral estimates by

Gar = n HA 2  r = O,l,2,...,n-I (3.6.2)

ar n IrV

where subscript a in Ga refers to blocked time series aim for i =

1,2,...,n and m 1,2,...,M-1.
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5. Adjust the power spectral estimates for a scale factor due

to the cosine data window tapering by

Sm 1 ^ m
Gar 0.875 Gar r = 0,,2,...,n- . (3.6.3)

6. Adjust the segment average for M-l blocked spectral estimates

each of length n by

1 M-I1 m
Gar = M Gar r = 0,,2,...,n- . (3.6.4)

m=l

7. Apply the frequency smoothing for segmently smoothed spectral

estimates of length n = 8192. The spectral estimates are unique only

up to the point where r = + 1. This is due to the result of the

application of the Fourier transform. At this point the Nyquist cut-

off frequency occurs. The smoothing is performed for 4096 spectral

estimates without including the zero frequency point.

Looking at the printed-out spectral estimates of 4096 values,

the energy is more concentrated in the lower frequency range. The

proposed frequency smoothing technique as discussed in section 3.4.4 is

therefore adopted. The frequency smoothed spectral estimates may be

considered as representing the midpoint of the frequency interval from

fk to fk+a-l, k > 1, where a is the chosen average value except when Z

equals unity. The value of the frequency associated with different

values of z and which corresponds to the spectral estimate in Eqs.

(3.4.5) to (3.4.9) is calculated as follows
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a= 1

fk = kAf k = 1,2,... ,8 , (3.6.5)

A=4

fk = [4(k-7) + 2.5]Af k = 9,10,...,38 , (3.6.6)

= 16

fk = [16(k-31) + 9.5]Af k = 39,40,...,62 , (3.6.7)

a = 64

fk = [64(k-54) + 33.5]Af k = 63,64,...,86 , (3.6.8)

and a = 256

fk = [256(k-79) + 129.5]Af k = 87,88,...,94 , (3.6.9)

1
where Af = na . The number of the spectral estimates was reduced to

94 as a result of the application of the segment average and frequency

smoothing technique in section 3.4.4. The frequency points represented

in Equations (3.6.5) to (3.6.9) are corresponding to these smoothed

spectral estimates.

3.6.2 Cross Spectrum

The computations for the cross spectral estimates between two

discrete time series ai and bi, i = 0,1,2,...,n-1 seem to be more in-

volved due to the requirement of obtaining the coherence function and

phase angles between the two time series. The general procedures for

calculating cross spectral estimates via FFT can be written as follows

1. Either truncate the excessive data or add enough zeros in

'm ,m
the two discrete time series ai and bi , i = 0,1,2,...,n-1 so that

n = 2P as discussed in step 1 in section 3.6.1.
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2. Taper both blocked time series ai and bm, i = 0,1,2,...n-

with the cosine taper data window or other appropriate data windows

as presented in section 3.3.2.

3. Let aim be the real part and bim be the imaginary part of a
'm 'm ,-

newly created complex time series ci  ai + jbi , i = 0,1,2,...,n-1

and j = Y .

4. Compute the finite Fourier transform of each blocked complex

time series by

n-I 'm
cr (f) = Z ck (t) Wrk r = O,l,2,...,n-I (3.6.10)

-27r k=O

where W = e n and m = 1,2,...,M-1 is the block number.
,m

5. Obtain the respective spectral values of both ai and
'm

bi , i = 0,1,2,...,n-1 by using the properties of the Fourier trans-

formation as discussed in section 3.5.1 as follows
~m*

C = Crm (f) + Cn-r(f) (3.6.11)
1( 2

and *
Sm Crm(f) - Cnr(f)Cr2 2j (3.6.12)

~m* m*
where Cn-r(f) represents complex conjugate of Cnr(f) and j = -T.

6. Compute the cross spectral estimate Gamr, r = 0,1,2,...,n-I for

block m by

^m 2At lm* ~m(

Gabr = n C*(f) Cl (f )  (3.6.13)

7. Adjust the cross spectral estimates by a scale factor due to

cosine data window tapering in each block
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m m 1 nGabr(f) = abr--.75) r = 0,1,2,...2 + 1 (3.6.14)

8. Apply the segment average smoothing for M-l blocks of spectral

estimates each of length n by

1 M-1 - m
Gabr(f) M 1  Gabr r = 0,1,2,...,+ 1 (3.6.15)

m=1

9. Pick up the real and imaginary part of Gabr by

Gabr(f) = COabr(f) - j Qabr(f) r = 0,l,2,...D-+ 1 (3.6.16)

where COabr(f) is called the cospectral density function and Qabr(f)

is called the quadrature spectral density function.

10. In order to apply the proposed frequency smoothing technique

for cross spectral density estimate, two different ways can be taken

as the following

a. Smooth the cross spectral estimate Gabr(f) and then ob-

tain the Co- and quadrature-spectral density function.

b. Smooth the real and imaginary parts of Gabr(f) individually

and then obtain the final smoothed cross spectral estimates.

These two prcoedures can give different results, since the

linear smoothing operation, the non-linear operations of the square

root of squared value, and division are not commutative. In meteoro-

logical applications, it is the co- and quadrature-spectral density fu-

nctions that are of interest instead of the positively valued cross

spectral density function. Thus, the procedure of smoothing the real
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and imaginary parts of the cross-spectral estimates separately is

used in this case. The final smoothed cross spectral density esti-

mates are obtained by

Gabr(f) = abr(f) + Qar(f) r = 1,2,...,94 . (3.6.17)

11. The phase angle contained in the smoothed cross spectral

estimate Gabr(f) is calculated by

eabr = tan -1 [Qabr(f) r = 1,2,...,94 . (3.6.18)

12. The smoothed squared coherence estimate is given by

Gabr (f)

Cohbr(f) ar) br(f) r = 1,2,...,94 (3.6.19)
abr Garff) - brff)

where Gar(f) and Gbr(f) are calculated by Eq. (3.6.4). The frequency

smoothing technique of Gar(f) and Gbr(f) was presented in the previous

section.



CHAPTER IV

STATISTICAL ERRORS

Errors in calculations of statistical quantities of digitized

time series are quite uncertain because of the large amount of data

collected, the underlying probabilistic nature of the data and the

method in deriving the desired statistical parameters.

The random nature of the data makes it almost impossible to know

the deterministic characteristics of a physical phenomenon. It is

only possible to know the average level and to obtain some estimate

of the reliability or accuracy of this average level.

In representing an estimate of a statistical parameter, no indi-

cation of the reliability of the estimate is found from the simple

calculations of the estimated value. Given the size of the sample does

not provide the means to interpret the accuracy of the estimate as

a function of the sample size. A more direct indication of the

accuracy is desirable.

The standard error of any estimate is used to indicate the

reliability or precision of the calculation of this estimate. What

one really wants is a range of values within which the estimates

should fall. Therefore, the notion of confidence interval for a

parameter is commonly used to serve this purpose.

80
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This chapter will investigate the validity of estimating the

blocked mean and blocked variances in the blocked time series in

relation to the sample mean and sample variances of the total sample.

The confidence interval of spectral density estimates as a result of

using the FFT technique will be determined in this chapter.

4.1 Mean Value Estimate

The block mean value for n data points of the ith time series in

the mth block may be calculated by

-- m 1i z Ai(j) i = 1,2,...,4 (4.1.1)
Sn j=1

where bar denotes the mean value and i indicates the number of the

time series.

The sample mean of the time series is simply the arithmetic

average of the block mean values as obtained by

1 M m
Ai = E Ai i = 1,2,...,4 (4.1.2)

m=l

where M is the total number of blocks in the time series.

In case the time series has not been blocked, then the sample

mean is calculated by

* 1 N
Ai N E Ai(j) i = 1,2,...,4 (4.1.3)

3=1

where N is the total number of samples in the time series (i.e. N =

nM).
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Combining Eqs. (4.1.1) and (4.1.2), one obtains

M n
Ai = 1 E E Ai(j)

m=l j=l

1 n 2n Mn 1
- Mn EAi(j) + E Ai(j) + ... + E Ai(J)

Mnj= j=n+l j=(M-l)n+l

1 Mn
= n Ai(j) i = 1,2,...,4 (4.1.4)

j=1

Comparing Eqs. (4.1.3) and (4.1.4), it is seen that the sample

mean of the sample can be calculated from the average of the block

mean values in each subseries. The only possible difference between

the calculated sample mean value of Eq. (4.1.2) and (4.1.3) is the

summation of large numbers by floating-point representation in the

computer without using double precision. In fact, the sample mean

values calculated from Equation 4.1.2 should be more accurate than

using Equation 4.1.3 directly.

4.2 Variance and Covariance Estimates

The sample variance and covariance are calculated from the fil-

tered series with exactly zero mean by Eq. (2.4.2) as follows

aia j = - ml aiaj  i,j = 1,2,...,4 (4.2.1)
m=1

where block variances and covariances are calculated from Eq. (2.4.1)

-nm 1 n
aiaj = E ai(k)aj(k) i,j = 1,2,...,4 (4.2.2)

k= 1
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where ai, i = 1,2,...,4 represents filtered time series. Equal sub-

scripts i = j in Eq. (4.2.1) denote the variances while unequal sub-

scripts i + j represent the covariances.

In case the filtered subseries has a near zero mean but not

exactly zero mean, then the values of block variances and covariances

calculated by Eq. (4.2.2) will be overestimated. The variance and

covariance of the total sample with near zero mean values for the sub-

series are calculated as follows

- * 1 Mn __m m
aia - M-1 mpl Z (ai(k) - ai ) (aj(k) a- )

M1 a_ _) aa
1 M-1 n ai  nM-l kZ ai(k)aj(k) - - ka (k)

m=l k=1 k=1

1 M-l

= aia j - a a (4.2.3)
m=m

ai =n z ai(k) i 1,2,...,4 . (4.2.4)

k=l

--m

Consequently, ai is the mean value of the subseries after the moving

average filter has been applied to the total sample. The reason we
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chose the number of blocks to be M-I here is because the data samples

were filtered and the ends were lost. Now, the sample variances and

covariances based on the total filtered sample can be calculated as

follows

---- 1 N
aia j  = z (ai(k) - i) (aj(k) - aj) , (4.2.5)

k=l

where ai is defined by

- 1 N
ai = ~ ai(k) i = 1,2,...,4 (4.2.6)

k=1

and N is the total number of data points in the filtered sample. In

this case, N is equal to n(M-l) data samples.

Expanding the terms in the right hand side of Eq. (4.2.5) and

combining, one obtains

aiaj = ai j - ai aj i,j = 1,2,...,4 (4.2.7)

where the Equations 4.2.1 and 4.2.2 have been used.

The error E(m) in variances and covariances as a result of the

subdivision of the original time series in blocks may be obtained by

combining the Equations 4.2.3 and 4.2.7 as follows

*

E(m) = aia j  - aia j

1 M-1
= M- ai aj - a aj (4.2.8)

m=l

or
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1 M-1
E(m) -a) (a - al) . (4.2.9)

m=l

The value of this error E(m) can be discussed by the following

two limiting cases:

1. In the limit when m = 1, the total sample consists of one

block only, the error is zero.

2. In the limit when m approaches infinity and the sample con-

tains a finite number of data points, then each block contains only

one data point. In this case, the block mean value is simply the

value of the data point itself in the block. It is obvious that the

error E(m) is again zero.

In case when the number of blocks is chosen to be a finite value

as in most practical situations, the error E(m) can be significant

since it depends on the time of the subseries. The time of the sub-

series will affect the shape of the moving average filter as can be

seen from Figure 5. The effective cut-off frequency in the filter with

different time interval is different. One should choose the block

length of the subseries to be comparable to the period of the minimum

frequencies of interest. The storage limitation in the computer for

numerical calculations imposed another restriction in the selection

of the block length in the subseries.

4.3 Spectral Density Estimate

For a stationary Gaussian random process {a(t)}, the power spectrum

for a sample record ak(t), k=O,l,.,n-l of finite length n is defined by
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1
Ga(f) = 2 9im E [IH(f,n)j2]  (4.3.1)

n->-

where
n-l j2fkAt

H(f,n) = At Z ak(t) e f . (4.3.2)
k=O

The estimate of power spectrum can be obtained by omitting the

limiting and expectation operations in the Eq. (4.3.1) to yield the

following

2 2(433)
Ga(f) = nAt IH(f'n)l (4.3.3)

1
with the narrowest possible resolution Be = nA

For the discrete frequency values, the Fourier components are

defined by

H(f,n) n- akt )  e-j2fkt (4.3.4)
Hk At E ak(t) e (4.3.4)Hk= At k=O

and the spectral estimate is given by

Ga(f) - n JHk2 (4.3.5)

The estimate of the spectral density function Ga(f) is denoted by

Ga(f) and is unbiased if

E[Ga(f)] = Ga(f) . (4.3.6)

The mean square error of the power spectral density estimate is

defined by

m.s.e. = E[(Ga(f) - Ga(f))2J . (4.3.7)
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In general, the power spectral density estimate is a function of

the number of data samples n. In order that Ga(f) is the consistent

estimate of the power spectral density function Ga(f), it is required

that

tim E[(Ga(f) - Ga(f))2] = 0 . (4.3.8)
n-*=

By assuming the random process {ai}, i = 1,2,...,n to be un-

correlated white noise. Otnes and Enochson [67] proved that the power

spectral density estimate Ga(f) is an unbiased but not a consistent

estimate of the power spectral density function Ga(f).

4.3.1 Chi-Square Distribution

The Fourier components H(f,n) computed by Eq. (4.3.2) are complex

with real and imaginary parts, HR(f,n) and Hi(f,n) which are uncor-

related random variables with zero mean and uiiit variance [6]. Both

HR(f,n) and H (f,n) will be Gaussian random variables if the data

sample ai(t), i - 0,l,2,...,n-l is Gaussian as a result of the linear

operation of the Fourier transformation. It is seen that the quantity

IH(f,n)l2 = HR2(f,n) + HI 2(f,n) (4.3.9)

is the sum of the squares of two independent Gaussian variables.

From the definition of Chi-square distribution, each frequency com-

ponent of the power spectral density Ga(f) will have a sampling dis-

tribution given by

2
S= X2 (4.3.10)

2.
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2where x2 is the Chi-square variable with two degrees of freedom. The

number of degrees of freedom, y, represents the number of independent

or "free" squares summing in the expression (4.3.9). The mean and

variance of the chi-square variable are y and 2 , respectively. The

normalized mean square error can be obtained by

E2 E[(Ga(f) - Ga(f))2] 2

[Ga(f)]2  Y

where use has been made of Equation 4.3.6.

For y = 2, the normalized standard error is given by

E = f = ±A (4.3.12)

which means that the standard deviation of the pSD estimate is as

great as the quantity being estimated. To reduce the error of the pSD

estimate as calculated by Eq. (4.3.5), smoothing the estimates is

necessary. By smoothing either segmentally or frequency smoothing

as discussed in chapter three, the number of degrees of freedom y can

be increased. It is seen, from Eq. (4.3.12) that the normalized

standard error can be reduced if y is increased.

The (1 - a) confidence interval for the power spectral density

function Ga(f) around the frequency f based upon an estimate Ga(f)

measured with a resolution bandwidth Be and a record length n is

given by

yGaf) yGa(f)2 a() < Ga(f) < 2 1 - a (4.3.12)

2 2
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and y = 2Ben . (4.3.13)

The term, I - a, is a fixed confidence level which commonly is taken

to be 0.80, 0.90 or 0.95. The true value Ga(f) lies between the two

values in the bracket of Eq. (4.3.12). The Chi-square distribution

X2y;a is tabulated in Table III and defined by

Y; = [b such that J P(x2)dy2 = a] (4.3.14)

For degrees of freedom where y > 30, the following expression

may be used to obtain the x2 distributions.

X2 2 T* + V j (4.3.15)

where T. is the corresponding percentile of the standard normal dis-

tribution (Table I).

4.3.2 Numerical Example

An example will illustrate the application of Equations 4.3.12

and 4.3.15.

The total number of data points used for the estimation of the

spectral density for 43 blocks each of which contains 8192 data points

is

N = 8192 x 43 = 352,256 .

The effective bandwidth for a sampling rate of 200 samples per second

is
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B = = 0.000567 HZ .

The number of the degrees of freedom is

y = 2BeT = 2

The 95% confidence interval for two degrees of freedom in Chi-square

distribution is found from Table 3 to be

2
X2; .975 = .051

(4.3.16)

2; .025 = 7.38

If Ga(f) is the spectral density estimate, then the 95% confidence

interval of the true spectral density function Ga(f) is given by

[ -Ga(f) <Ga(f) 1- G a(f)

or

[0.271 Ga(f) < Ga(f) < 39.215 Ga(f)] . (4.3.17)

It is seen from Eq. (4.3.17) that the true spectrum lies in a

wide range of values and that little confidence can be placed on the

estimate. The range of the confidence interval can be reduced by in-

creasing the number of degrees of freedom. The number of degrees of

freedom can be increased greatly when the segment average technique is

applied. By averaging over 43 blocks of spectral density estimates,

the resulted smoothed spectral density estimate has the number of

degrees of freedom as follows



91

y = 43 x 2 = 86

The 95% confidence bands for 86 degrees of freedom in Chi-square dis-

tribution is formed by using Equation 4.3.15 as follows

2
X86 ; .975 = 61.68

2 (4.3.18)
x86 ; .025 = 113.2

and the true spectrum lies in the interval

[.76 Ga(f) < Ga(f) < 1.39 Ga(f)] (4.3.19)

It is seen that the range of values in between which the true spec-

trum lies has been reduced as a result of applying the segment smoothing

technique in the spectral density estimates. The application of

frequency smoothing on the spectral density estimates may give a much

better representation in the range of estimated values.

The analysis shown above was based upon the assumption that the

data samples were both Gaussian and white. In general, the data are

colored (i.e. correlated) in some manner. This has the effect of

reducing the number of the degrees of freedom in the Chi-square dis-

tribution. The standard practice is to use the white noise results

as a guideline in the spectral density estimates [67].



CHAPTER V

DISCUSSION OF THE RESULTS

The data used for the statistical analysis in this dissertation

were measured with either the Model 1080D Total Vector Anemometer

probe (triple split films) or the Model 1296L dual split film

probe both manufactured by Thermo-Systems, Inc. The operation and

the analysis of the data from these probes are discussed in detail

in references [95] and [108] respectively. In conjunction with the

two types of TSI probes a set of Gill propeller anemometers was used.

These propeller anemometers were mounted in such a way that one was

parallel to the TSI probe and the other perpendicular to the first

one and both in a horizontal plane and located adjacent to the TSI

probe. A detailed discussion of the operation of the Gill anemometers

and data analysis can be found in Appendix A. The Gill anemometers

were used mainly for comparison of results with those obtained from

both types of TSI probes. The anemometers were located on the top of

the air exchanger of the low speed wind tunnel at Virginia Polytechnic

Institute and State University. This was the best location available

in the neighborhood of this wind tunnel in which the anemometers were

calibrated. The connecting cable between the probe and the anemo-

meter was 350 feet long, and since it was not feasible to move the

trailer in which the data acquisition system was located, the above

92
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described location for the probes was the best available within

a 350-foot radius from the trailer.

It turned out that the winds measured in this location as mentioned

above were mainly from a north-west direction. However, due to the

presence of upstream buildings and due to the location of the anemo-

meters on top of the wind tunnel a flow was measured with an appreciable

vertical component and with relatively large fluctuations in magnitude

and lateral direction. As a result of the type of data measured, a

great deal of effort was used in the proper analysis of the data with

respect to stationarity, filtering and smoothing of the calculated

statistical quantities. Mean values, variances, covariances, power

spectral estimates, cross spectral estimates, coherence functions and

phase angles of the three turbulent wind components in the mean wind

oriented coordinate system were calculated.

During the period in time that these data were taken, considerable

troubles were still encountered with the data acquisition system

(see reference [95] for a detailed description of the data acquisition

system). Specifically, the PDP-11/20 mini-computer had an intermittent

problem which was extremely difficult to pin down. Also, the data

acquisition as well as the consequent digitizing of the data was

affected by the simultaneous operation of the wind tunnel. It was

found that fluctuations in line voltage as a result of the starting of

the wind tunnel often erased the recorded time of day or the recorded

voltages of the anemometers.
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Due to the fact that two different anemometers (TSI and Gill)

were used simultaneously, the data from the Gill had to be recorded

on an F.M. tape recorder first and consequently played back at a

later time in order to be digitized. The data received from either

TSI - anemometer was fed directly into the multiplexer and directly

stored on the digital tape. It often occurred that bad data or no

data were recorded on the digital tape or that tape marks disappeared

and as a result the data were useless. Since this period, the entire

data acquisition and data handling system has been moved to NASA -

Wallops Station for data gathering from the meteorological tower at

Wallops Island. The Wallops Island data will be analyzed at a later

date, only data taken at the Virginia Polytechnic Institute and State

University location will be discussed in this dissertation. The data

acquisition and data handling system while in operation at Wallops

Island did not experience the breakdown and problems as were en-

countered when in operation at Virginia Polytechnic Institute and

State University. Consequently, the data discussed in this report

are somewhat sketchy, but adequate to indicate that very good

results can be obtained with the system.

The accuracy and the efficiency of the computer program which

was developed in order to calculate the statistical quantities of a

digitized time series, was tested against a simulated time series. The

theory and the processing of digital simulation of random processes

is described in detail by Sinha [87]. If the power-spectral density
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function is known, a sample of the corresponding time series can be

developed by inverse fast Fourier transformation.

In order to simulate the streamwise turbulence component in

the atmosphere, use was made of the semi-empirical von Karman

spectrum given by the followinq expression in dimensionless form

4 Lf
fG(f) U-Lf 2 5/6

u2 + 70.78 ( )

A 20% intensity of the turbulence was assumed so that 1u = 0.20 U.

Here, G(f) is the power spectral density function of the streamwise

turbulence component so that

SG(f)df = ,
0

and L is the longitudinal integral scale which varies with height but

'which was chosen to be 360 feet.

Based on this information a value for the simulated time series

was calculated at intervals of .05 seconds. In this manner (2)15

data points were generated which represents the digitized time series

sampled at a rate of 20 samples per second and of 27.31 minutes

duration (Figure 12). This simulated, digitized time series was then

used as the input to the computer program which was developed for the

statistical analysis of time series of long duration. The calculated

power spectral density function was then compared with the original

semi-empirical von Karman spectrum from which the time series was
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developed. As can be seen from Figure 13, the similarity is very

good, especially at higher frequencies. At lower frequencies, the

estimates of the power spectral density function seem to deviate a

great deal from the expected values which is due to the limited

sample length of the simulated time series.

Because of the way the fast Fourier transformation works, only

a few points at the lower frequency range are calculated and as a

result one can only resort to the so-called segment smoothing of

the spectral estimates in this range. At the high frequency range

the density of calculated spectral estimates is much higher and as

a result the so-called combined smoothing process can be applied

with the result that the estimates show much less scattering.

The statistical quantities are calculated from the data

measured by three different wind measuring sensors, namely, Gill

anemometers, TSI Model 1080-D total vector anemometer and the TSI

Model 1296, dual split-film probe for four separate runs. Mean

values, variances and the covariances are all listed and compared in

Tables IV through VII. The smoothed spectral density estimates are

plotted versus frequencies in Figures 14 through 25.

In Table IV, the block means, samples means and the number of

reverse arrangements of the block means used for statistical test are

listed for each velocity component in the sensor oriented coordinate

system. Mean wind velocity, variances and covariances of the ve-

locity components and temperature in the mean wind coordinate system

are also tabulated. The calculated numbers of reverse arrangements of
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the block means of the velocity components show that the hypothesis of

nonstationarity as far as the trend in the data is concerned is accept-

able at the 10 percent level of significance for the A and B components

of the veloicty. The reverse arrangements of the block means of the C

component shows that some trend is present. However, for this run the

results of the trend test are in general acceptable. If the number of

reverse arrangements would be significantly different from the expected

numbers given in Table II, the hypothesis of acceptable nonstationarity

would be rejected and the data would be rejected for further analysis.

The results of run 10 show that an appreciable vertical mean ve-

locity component is present and the turbulence intensities are between

20 and 25 percent for all three components.

The smoothed power spectral density estimates of each velocity com-

ponent of run 10 are plotted against frequency in Figures 14 through 16.

The area under the curves correspond closely to the respective variances

and at the high frequency range the spectrum functions vary as expected

as the frequency to the -5/3 power. Due to the limitation of core storage

in the IBM 360/155 digital computer, the number of data points selected

in the subseries restricts the computation of the spectrum functions at

frequencies above 0.0244 hertz (period of 40.96 seconds). Due to the

chosen sample rate of 200 samples per second the maximum frequency at which

the spectrum function can be analyzed is 100 hertz.

The cospectrum between the longitudinal and vertical velocity com-

ponents is plotted in Figure 17, and the shape of the spectrum agrees

fairly well with that which was observed at Brookhaven, Long Island and

and reported by Panfsky [72].
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In Table V, the results calculated from the data of run 11 as

measured by the TSI #1192 total vector anemometer and the Gill ane-

mometers are compared. In order that the results calculated from the

data as measured by these two different sensors are comparable, the

block means calculated from the velocity components measured by TSI

#1192 probe are transformed into the probe oriented coordinate system.

The number of reverse arrangements of the block means for measurements

from the TSI #1192 probe are calculated based on the velocity compo-

nents in the sensor oriented coordinate system. The number of reverse

arrangements of the block means for Gill anemometers are calculated

based on the data obtained in the probe oriented coordinate system.

The number of reverse arrangements for the block means of the

lateral velocity component is very high and after examination of the

data one can see that this is due to a gradual change in wind direction

or due to the gradual change from positive to negative lateral velocity

components. The longitudinal component of the velocity does nbt show

any trend and is not very much affected by the gradual change in wind

direction. Comparison of the block means and the sample mean shows that

the longitudinal component measured by the Gill anemometer is consistently

higher than that measured by the TSI probe. The block means and the

sample mean of the lateral velocity component and the angle the mean

wind makes with the direction of the instruments compare very well.

Due to the limited response characteristics of the Gill anemometers,

the turbulence quantities obtained from the Gill anemometer are consistently

lower than those obtained from the TSI probe. Due to the presence of some

high frequency noise during the data runs, the smoothed spectral estimates
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have folded in the high-frequency range and as a result the graphs for

the smoothed spectral estimates for run 11 are not shown.

In Tables VI and VII, the results calculated from the data of

both runs 12 and 14 as measured by the dual split-film anemometer and

Gill anemometers are tabulated and compared. Both these anemometers

measure the velocity components in the same probe oriented coordinate

system. Since the shafts of the propellers of the Gill anemometers

are parallel to each of the two perpendicular coordinate axes in the

horizontal plane, only the block means of the longitudinal and lateral

velocity components can be compared in Tables VI and VII. The block

means calculated from the vertical velocity components as measured by

the dual split-film probe are tabulated only for completeness not for

comparison.

The number of reverse arrangements for the block means of the

longitudinal and lateral velocity components for both run 12 and 14 show

that the data are free of abnormal trends. Again the Gill anemometer

overestimates the block means of the longitudinal velocity component

by as much as 15 percent. The variances u2 and v2 are estimated lower

by the Gill anemometers as before. For this particular type of flow the

values for the covariance uw are very low and compare reasonably well.

The horizontal angles of attack between the mean wind and the instruments

compare quite well for both runs.

In both Tables VI and VII, comparisons are also made for the values

of the sample means, the variances, and the covariances of the velocity

components in the mean wind coordinate system for the cases with either

the near-zero block-mean values removed or not removed. These near-zero
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block means are the mean values remaining in the data samples of each

block after having applied the moving-average and differencing high-

pass filter to the origional time series as discussed in chapter two.

The small near-zero mean values do not have any effect upon the values

of the mean velocity components in either the probe oriented coordinate

system or the mean wind coordinate system since the mean velocity com-

ponents are calculated from the unfiltered original time series. The

effects of these near-zero means upon the estimated values of the

variances and covariances in the mean wind direction are not very

significant. They do have significant effects upon the estimated values

of the spectral density function at low frequencies.

Figures 18 through 20 show the plots of the power spectrum of

the longitudinal, lateral, and vertical velocity components measured by

TSI #122 in run 12, respectively. The power spectrum of the longitudinal

and lateral velocity components measured by the Gill anemometers in the

same run 12 are plotted in Figures 21 and 22. It is quite evident when

like spectra form the TSI probe and the Gill anemometers are superimposed,

the difference at frequencies higher than one hertz are considerable!

expecially when one realizes that the ordinate of these spectrum functions

has a logarithmic scale. For both spectrum functions of the longitudinal

as well as the lateral turbulence components the Gill anemometers show a

too rapid decrease with frequency in the range from 0.5 to 100 hertz. In

the low frequency range the comparison is quite good.

The power spectrum of the longitudinal velocity component measured

by the TSI #122 probe in run 14 is plotted in Figure 23. In order to

obtain some spectral properties in the lower frequency range below 0.024

hertz, two new time series were generated from the data samples in run 14.
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The first one (series A) is generated by taking a 10-point non-over-

lapping average from the original time series. The second one (series

B) is obtained by containing every 10th point from the original time

series. The two newly generated time series have a reduced number of

data points to one-tenth of the original number. The sampling rate

is also decreased from 200 samples per second to 20 samples per second.

The spectral density estimates for the newly generated time series are

calculated by following the similar procedures used in computing the

estimates from the original time series except the segment average is

taken over the corresponding estimates of the four blocked subseries.

The power spectra calculated from the time series A and B are

plotted in the Figures 25 and 24 respectively and can be compared with

the original power spectrum of run 14 plotted in Figure 23. The

power spectra of the newly created time series show a greater deal of

scatter in the low and intermediate frequency range. The spectrum of

the time series B shows some frequency folding in the high-frequency

range since the data were not filtered at 10 hertz. The spectrum of

the time series does not show this folding since the averaging

procedure act as a low-pass filter at approximately 10 hertz. At the

low-frequency range the scatter of the spectrum data for both time

series A and B is more severe than for the spectrum data of the original

time series. The limited segment averaging results in a reduction of

the number of degrees of freedom which will give a broad confidence in-

terval in the spectral density estimates. The data in each block sampled

at a rate of 20 samples per second allows calculation of spectral estimates
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down to a frequency of 0.00244 hertz (period of 409.6 seconds) since

the number of data per block is limited to 213 or 8192. However, only

four blocks can be obtained from time series A and B,and in the low-

frequency range where only segment averaging can be applied the spectral

data can only be averaged over four values as compared to 44 values

in the original time series. In order to get more reliable spectrum

estimates at frequencies lower than 0.0244 hertz, the total sample time

should be increased ten times if spectral information down to 0.00244

hertz is required. However, with time series A and B we can get some

idea how the spectrum varies at frequencies lower than 0.0244 hertz.



CHAPTER VI

CONCLUSIONS

The statistical analysis of a discrete time series with a large

number of data points representing a random process can be achieved

successfully by the procedures as outlined in this report. It is

necessary that these time series are subdivided into a certain number

of sample records each containing an equal number of data points. The

number of data points in each sample record depends largely on the

storage capacity of the available digital computer. The total number of

data points in each sample record should be chosen such that it is an

integer power of two in order to satisfy the requirements for the fast

Fourier Transformation. The statistical quantities calculated from

each sample record or data block can be used to determine the degree of

stationarity of the total sample by application of the nonparametric

statistical test. The existence of any trends in the time series can be

removed successfully by using the moving-average and differencing high-

pass filter. This type of statistical analysis was used to obtain

statistical information from long time series representing low-level

atmospheric winds and temperature. These quantities were measured with

fast response split-film anemometers developed by Thermo-Systems Inc.

A set of propeller-type Gill anemometers was used simultaneously to

measure wind velocities in the horizontal plane in order to compare their

results with the results from the TSI probes.

The digitized data obtained from the TSI probes are stored on

digital tape as voltages. Seven voltages are necessary to obtain three

velocity components and temperature if the triple split-film probe is
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used, and five voltages are necessary to obtain the same information

when the dual split-film probe is used. The following steps are re-

quired to obtain the statistical information for each data set.

A. The first step is to calculate for each sample point the three

velocity components and the temperature. This information is obtained

through calculations as outlined in reference 95, and it is consequently

stored on another digital tape in blocks of 418 sample points each. The

velocity components are calculated in the so-called sensor-oriented co-

ordinate system.

B. In the second step, the block size is changed from 418 sample

points to 213 = 8192 sample or data points. First the meansof each ve-

locity component and the magnitude of the mean velocity for each block

are calculated. Also the mean temperature and the average horizontal

angle the mean velocity for each block makes with the probe axis is

obtained. In addition,the block variances and covariances for the three

velocity components and the temperature are calculated. The number of

blocks depends on the recording length of the data, but for a run of

about one half hour the number of blocks is 44. In addition to the block

means, the sample means of the velocity components, the temperature as

well as the horizontal angle between the sample mean-wind and the axis

of the probe are calculated. Also the number of reverse arrangements of

the block means of the velocity components and the temperature and those

of the block standard deviations of velocity components and temperature

are calculated. The latter calculations are made in order to check for

nonstationarities such as time-varying mean values or time-varying standard

deviations or a combination of these two. At this point further analysis
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of the data would be stopped if the number of reverse arrangements would

be significantly different from the expected numbers as given in Table II.

C. The third step of the data analysis consists of the removal of

the mean and low frequency components of the four time series. This is

accomplished with the use of the moving-average and differencing high-

pass filter. After this filter has been applied to the data four new

time series with new sample mean and'without low-frequency components are

established. The cutoff frequency for this type of filter with a filtering

interval of 40.96 seconds (the length of one block) is approximately

.0108 hertz.

D. In the fourth step the sample variances and covariances of the

four filtered time series are calculated and consequently transformed

into the mean-wind coordinate system.

E. In this step the data representing the filtered velocity com-

ponents in the sensor oriented coordinate system are transformed into

components of the mean-wind coordinate system. As a result four time

series with zero mean are created representing the fluctuating temperature

and, the fluctuating velocity components in the mean-wind coordinate

system.

F. In this step the power spectral densities of the four time

series obtained in step E are calculated using the newly developed fast

Fourier transform method with the no-bit reversal procedure and also using

the appropriate combined smoothing techniques.

G. In the last step the coincident spectral density function and

the quadrature spectral density function "of two different time series

are calculated using the newly developed fast Fourier transform method

and in addition using both the segment as well as frequency averaging method
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In order to check the accuracy of the calculated power spectral

density extimates of any time series, spectral densities were calcul-

ated from a simulated time series which was generated from a known

spectrum function. The calculated spectral densities correspond quite

well with the spectrum function from which the simulated time series

was generated. This indicates that with the newly developed computer

program using the fast Fourier transform with a no-bit reversal procedure

and with proper smoothing procedures,accurate spectral information can

be obtained in the frequency range between 0.0244 and 100 hertz. Spectral

density estimates of a lower degree of accuracy for frequencies less

than 0.0244 hertz can be obtained by creating a new time series by taking

as an example a 10-point non-overlapping average of the original time

series. Mean values, variances as well as covariances of the two hori-

zontal wind components measured with the TSI probe were compared with the

same quantities measured simultaneously with the Gill propellor anemometers.

The discrepancies in these quantities can be attributed to the varying

and limiting response characteristics of the Gill propeller anemometers.

As a result of carefully carried out calibration procedures and

the application of the newly developed computer program, accurate statis-

tical estimates of long time series describing the fluctuating wind com-

ponents can be obtained with either the dual or the triple split film TSI

probes.
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Figure 1-a. Schematic Diagram of the Sensor Oriented Coordinate System
XYZ and the Probe Oriented Coordinate System x*y*z*.
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Figure 1-b. Schematic Diagram of the Probe Oriented Coordinate System
x*y*z* and the Mean Wind Coordinate System xyz.
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Figure 4. Type of Nonstationary Trend Undetectable by the
Trend Test.
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Figure 10. Filter Shape Before (top) and After (bottom)
Frequency Smoothing (K is the number of
smoothing points).
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Figure 11. Overall Filter Spacing of the Proposed Frequency Smoothing Technique
(m = 8192, at = 0.005 second).
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Figure 12. Time Series Simulated from von Karman Spectrum.
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Figure 13. Power Spectrum of the Simulated Time Series.
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Figure 14. Power Spectrum of the Longitudinal Velocity Component.
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Figure 15. Power Spectrum of the Lateral Velocity Component.
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Figure 16. Power Spectrum of the Vertical Velocity Component.
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Figure 17. Cospectrum Between Longitudinal and Vertical Velocity
Components.
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Figure 18. Power Spectrum of the Longitudinal Velocity Component.
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Figure 19. Power Spectrum of the Lateral Velocity Component.
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Figure 20. Power Spectrum of the Vertical Velocity Component.
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Figure 21. Power Spectrum of the Longitudinal Velocity Component.
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Figure 22. Power Spectrum of the Lateral Velocity Component.
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Figure 23. Power Spectrum of the Longitudinal Velocity Component.
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Figure 24. Power Spectrum of the Longitudinal Velocity Component.
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Figure 25. Power Spectrum of the Longitudinal Velocity Component.



144

TABLE I. PERCENTILES OF THE STANDARD NORMAL
DISTRIBUTION.

P[T < T] To P[T < Ta] T

.001 -3.09 .600 0.25

.005 -2.58 .700 0.52

.010 -2.33 .800 0.84

.020 -2.05 .850 1.04

.025 -1.97 .900 1.28

.030 -1.88 .950 1.645

.040 -1.75 .960 1.75

.050 -1.645 .970 '1.88

.100 -1.28 .975 1.97

.150 -1.04 .980 2.05

.200 -0.84 .990 2.33

.300 -0.52 .995 2.58

.400 -0.25 .999 3.09

.500 0

T
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TABLE II. PERCENTAGE POINTS OF REVERSE ARRANGEMENT DISTRIBUTION.

0.99 0.975 0.95 0.05 0.025 0.01

10 9 11 13 31 33 35
11 12 14 16 38 40 42
12 16 18 21 44 47 49
13 19 22 25 52 55 58
14 24 27 30 60 63 66
15 28 32 35 69 72 76
16 34 38 41 78 81 85
17 39 44 48 87 91 96
18 45 50 54 98 102 107
19 52 57 . 61 109 113 118
20 59 64 69 120 125 130
21 66 72 77 132 137 143
22 74 80 86 144 150 156
23 82 89 95 157 163 170
24 91 98 104 171 177 184
25 100 108 114 185 191 199
26 109 118 125 199 206 215
27 119 128 136 214 222 231
28 130 139 147 230 238 247
29 140 150 159 246 255 265
30 152 162 171 263 272 282
31 163 174 184 280 290 301
32 176 187 197 298 308 319
33 188 200 210 317 327 339
34 201 214 225 335 346 359
35 215 228 239 355 366 379
36 229 243 254 375 386 400
37 243 258 270 395 407 422
38 258 273 286 416 429 444
39 274 289 302 438 451 466
40 290 305 319 460 474 489
41 306 322 336 483 497 513
42 323 340 354 506 520 537
43 340 357 372 530 545 562
44 357 376 391 554 569 588
45 375 394 410 579 595 614
46 394 413 430 604 621 640
47 413 433 450 630 647 667
48 432 453 471 656 674 695
49 452 474 492 683 701 723
50 473 495 514 710 729 751
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TABLE II (Continued)

0.99 0.975 0.95 0.05 0.025 0.01

51 494 516 536 738 758 780
52 515 538 558 767 787 810
53 537 561 581 796 816 840
54 559 584 605 825 846 871
55 582 607 629 855 877 902
56 605 631 653 886 908 934
57 628 655 678 917 940 967
58 652 680 703 949 972 1000
59 677 705 729 981 1005 1033
60 702 731 756 1013 1038 1067
61 727 757 782 1047 1072 1102
62 753 784 810 1080 1106 1137
63 780 811 837 1115 1141 1172
64 806 838 866 1149 1177 1209
65 834 866 894 1185 1213 1245
66 861 895 923 1221 1249 1283
67 890 924 953 1257 1286 1320
68 918 953 983 1294 1324 1359
69 948 983 1014 1331 1362 1397
70 977 1014 1045 1369 1400 1437
71 1007 1045 1076 1408 1439 1477
72 1038 1076 1108 1447 1479 1517
73 1069 1108 1141 1486 1519 1558
74 1100 1140 1174 1526 1560 1600
75 1132 1173 1207 1567 1601 1642
76 1165 1206 1241 1608 1643 1684
77 1198 1240 1275 1650 1685 1727
78 1231 1274 1310 1692 1728 1771
79 1265 1309 1346 1734 1771 1815
80 1299 1344 1382 1777 1815 1860
81 1334 1379 1418 1821 1860 1905
82 1369 1415 1455 1865 1905 1951
83 1405 1452 1492 1910 1950 1997
84 1441 1489 1530 1955 1996 2044
85 1478 1526 1568 2001 2043 2091
86 1515 1564 1606 2048 2090 2139
87 1552 1603 1646 2094 2137 2188
88 1590 1642 1685 2142 2185 2237
89 1629 1681 1725 2190 2234 2286
90 1668 1721 1766 2238 2283 2336
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TABLE II (Continued)

0.99 0.975 0.95 0.05 0.025 0.01

91 1707 1761 1807 2287 2333 2387
92 1747 1802 1849 2336 2383 2438
93 1787 1843 1891 2386 2434 2490
94 1828 1885 1933 2437 2485 2542
95 1870 1927 1976 2488 2537 2594
96 1911 1970 2020 2539 2589 2648
97 1954 2013 2064 2591 2642 2701
98 1996 2057 2108 2644 2695 2756
99 2040 2101 2153 2697 2749 2810

100 2083 2145 2198 2751 2804 2866

*Values of ta;, such that Prob[tx > t;c ] = a.



TABLE III. PERCENTILES OF THE CHI-SQUARE DISTRIBUTION.*

Degrees 2 2 2 2 2 2 2 2

of x.99 x.975  x.95 x.90 x.10 x.05 x.025 x.01
Freedom

1 .00016 .00098 .0039 .0158 2.71 3.84 5.02 6.63

2 .020 .051 .103 .211 4.61 5.99 7.38 9.21

3 .115 .216 .352 .584 6.25 7.81 9.35 11.3

4 .297 .484 .711 1.06 7.78 9.49 11.1 13.3

5 .554 .831 1.15 1.61 9.24 11.1 12.8 15.1

6 .872 1.24 1.64 2.20 10.6 12.6 14.4 16.8

7 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5

8 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1

9 2.09 2.70 3.33 4.17 14.7 16.9 19.0 21.7

10 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2

12 3.57 4.40 5.23 6.30 18.5 21.0 23.3 26.2

14 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1

16 5.81 6.91 7.96 9.31 23.5 26.3 28.8 32.0

18 7.01 8.23 9.39 10.9 26.0 28.9 31.5 34.8

20 8.26 9.59 10.9 12.4 28.4 31.4 34.2 37.6

22 9.54 11.0 12.3 14.0 30.8 33.9 36.8 40.3

24 10.9 12.4 13.8 15.7 33.2 36.4 39.4 43.0

26 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6

28 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3

30 15.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9

40 22.1 24.4 26.5 29.0 51.8 55.8 59.3 63.7



TABLE III (Continued)

Degrees 2 2 2 2 2 2 2 2
of x.99 X.975 x.95 x.90 X.10 X.05 x.025 X.01

Freedom

50 29.7 32.3 24.8 37.7 63.2 67.5 71.4 76.2

60 37.5 40.5 43.2 46.5 74.4 79.1 83.3 88.4

*Values of X2 such that Prob [x 2 > X2*Va o ;Y;a]

AREA = a

2
xy;ct
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TABLE IV. RESULTS OF RUN 10 MEASUREMENTS: TSI #1192 (TRIPLE SPLIT
FILM).

Block Means of the Velocity Components in
Block Number the Sensor Oriented Coordinate System

v(A) fps v(B) fps v(C) fps

1 7.159 0.315 19.118
2 6.872 1.232 15.274
3 6.664 12.136 10.567
4 7.306 11.930 12.626
5 6.235 5.927 14.096
6 2.369 3.524 10.346
7 4.893 1.206 15.555
8 6.932 -0.821 23.212
9 6.692 -1.322 26.001
10 4.141 2.949 16.273
11 5.224 1.336 16.416
12 5.282 3.082 15.915
13 10.639 14.491 17.574
14 8.049 3.766 21.162
15 8.247 6.195 17.395
16 6.072 0.441 22.161
17 7.211 0.205 22.961
18 7.766 0.980 18.673
19 5.015 -0.723 18.898
20 5.915 -0.143 19.546
21 8.586 2.636 20.457
22 7.390 3.662 15.965
23 4.374 6.836 13.083
24 4.337 -0.866 19.375
25 3.472 -1.763 21.035
26 4.058 -0.796 20.246
27 6.941 1.359 18.494
28 7.503 1.036 20.262
29 9.147 9.244 15.837
30 7.301 10.648 11.629
31 8.605 7.725 12.869
32 7.905 4.548 16.498
33 4.665 1.491 16.278
34 6.505 2.555 16.601
35 7.209 6.773 12.281
36 5.946 5.954 11.613
37 9.551 13.367 13.501
38 7.881 3.950 14.587
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TABLE IV (Continued)

Block Means of the Velocity Components in

Block Number the Sensor Oriented Coordinate System

v(A) fps v(B) fps v(C) fps

39 5.730 1.151 16.624
40 .1.979 1.008 11.641
41 2.102 2.806 11.127
42 0.468 3.191 8.227
43 1.599 3.204 7.521
44 7.733 7.867 12.748

Sample Mean 6.129 fps 3.734 fps 16.188 fps

Number of Reverse
Arrangements of 504.0 424.0 584.0
the Block Means

Means, variances and covariances of the velocity components and
temperature in the mean wind coordinate system:

U = 17.429 fps
V = 0.0 fps
W = 3.129 fps
T = 39.110 IF

u2 = 15.778 (fps)2

uv = -2.474 (fps)2

uw = -3.903 (fps)2

ia = -0.205 fps-oF
v2 = 18.029 (fps)2

vw = 1.012 (fps)2
at = 0.513 fps-OF

w2 = 10.4 (fps)2

w = -0.105 fps-oF
7 = 0.455 (°F) 2
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TABLE V. RESULTS OF RUN 11 MEASUREMENTS: TSI #1192 (TRIPLE SPLIT
FILM) -- GILL ANEMOMETERS.

Block Means of the Velocity Components in the Probe
Block Oriented Coordinate System
Number Gill Anemometers TSI #1192 Gill Anemometers TSI #1192

v'(x*) v'(x*) v'(y*) v'(y*)

1 33.839 31.774 7.490 8.561
2 27.660 25.584 7.645 8.140
3 29.385 26.814 10.668 11.404
4 22.272 18.846 18.131 14.929
5 27.244 23.009 16.073 16.952
6 26.837 22.699 16.747 17.116
7 26.221 22.869 13.638 14.326
8 20.513 18.016 12.177 11.590
9 16.328 14.732 12.509 9.598

10 24.719 21.331 17.402 15.866
11 25.447 22.354 11.876 12.642
12 16.918 15.709 9.262 8.018
13 24.315 20.883 13.089 13.879
14 26.210 22.893 12.069 12.099
15 30.838 27.496 11.497 12.394
16 32.487 28.336 14.951 15.874
17 28.082 25.038 10.749 11.963
18 26.172 24.006 8.004 8.302
19 26.893 25.376 5.158 6.:399
20 24.310 22.529 7.533 8.126
21 39.024 37.139 5.112 6.206
22 42.911 40.890 4.986 7.015
23 38.896 36.741 6.889 8.387
24 40.385 38.757 2.037 3.641
25 39.766 38.061 3.621 5.018
26 37.026 36.001 3.353 4.697
27 39.881 38.289 -4.187 -3.475
28 30.765 29.668 -2.398 -1.054
29 28.728 27.510 -1.806 -1.240
30 27.699 26.396 -3.908 -3.883
31 27.268 25.651 1.018 1.411
32 33.251 31.501 6.514 7.734
33 28.653 27.330 2.609 3.478
34 29.494 28.187 5.964 7.159
35 31.008 29.634 5.831 7.159
36 28.059 26.900 3.132 4.153
37 24.640 23.980 -1.387 -1.692
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TABLE V (Continued)

Block Means of the Velocity Components in the Probe
Block Oriented Coordinate System
Number Gill Anemometers TSI #1192 Gill Anemometers TSI #1192

v'(x*) v'(x*) v'(y*) v'(y*)

38 26.047 25.087 0.799 1.076
39 25.754 24.587 3.797 4.825
40 20.645 19.657 4.591 4.639
41 22.335 21.677 -0.353 -0.153
42 15.381 15.310 -1.259 -1.701
43 17.851 16.315 -4.003 -4.018
44 15.865 15.173 -2.678 -2.659

Number of
Reverse
Arrange-
ments of
the Block
Means in 512.0 427.0 766.0 671.0
Sensor
Oriented
Coordinate
System

Mean Wind Components in the Probe Oriented Coordinate System

TSI #1192 Gill Anemometers

U' (fps) 25.93 27.91
V' (fps) 6.70 6.25

T (oF) 33.03
a (deg.) -14.49 -12.62
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TABLE V (Continued)

Means, Variances and Covariances of the Velocity Components
in the Mean-Wind Coordinate System

TSI #1192 Gill Anemometers

U (fps) 26.778 28.600
y (fps) 0.0 0.0
W (fps) 5.920

u2 (fps)2  35.914 26.367
uv (fps)2  2.464 0.319
uw (fps)2  -4.391
ue fps-OF -0.743
v2 (fps)2  32.931 22.680
vw (fps)2  0.050
ve (fps-oF) -0.242
w2 (fps)2  25.316
we (fps-oF) 0.040
0 (OF) 0.367



TABLE VI. RESULTS OF RUN 12 MEASUREMENTS: TSI #122 (DUAL SPLIT FILM) -- GILL ANEMOMETERS.

Block Means of the Velocity Components in the Probe Oriented Coordinate System

Block Number Gill Anemometers TSI #122 Gill Anemometers TSI #122 TSI #122
v(x*) v(x*) v(y*) v(y*) v(z*)

1 24.132 23.535 -3.656 -0.149 7.976
2 23.528 23.560 -1.027 2.866 8.096
3 28.992 26.246 -9.957 -8.377 6.793
4 32.051 29.115 -3.910 -1.331 7.950
5 32.846 34.792 -5.209 -2.437 7.064

6 28.414 23.290 -18.330 -18.530 7.804

7 30.508 23.050 -24.876 -24.837 7.244
8 26.462 18.599 -24.103 -23.335 5.787
9 22.803 20.223 -22.716 -21.351 6.405

10 22.515 20.223 -7.472 -6.077 6.498
11 32.998 32.323 2.572 5.328 8.175
12 35.420 34.819 1.880 5.312 8.931
13 19.690 18.519 -7.062 -5.419 5.366
14 22.059 17.190 -14.803 -14.636 5.289
15 16.780 14.627 -9.382 -7.963 4.142
16 16.681 17.027 -2.512 0.433 3.971
17 22.781 21.644 -0.704 1.207 6.798
18 25.599 24.852 -0.144 3.554 8.288

19 36.042 32.616 -9.502 -7.801 6.364
20 23.357 21.106 -6.997 -4.233 7.121
21 18.160 15.151 -10.525 -7.953 4.729
22 23.236 14.392 -23.278 -22.111 6.049

23 19.137 16.359 -10.046 -9.157 6.888
24 17.285 16.352 -4.860 -2.812 4.520
25 23.981 23.431 -0.543 2.057 4.589



TABLE VI (Continued)

Block Means of the Velocity Components in the Probe Oriented Coordinate System

Block Number Gill Anemometers TSI #122 Gill Anemometers TSI #122 TSI #122
v(x*) v(x*) v(y*) v(y*) v(z*)

26 21.584 20.232 -7.411 -5.219 5.268
27 17.827 11.484 -15.543 -14.812 4.806
28 22.796 15.873 -20.170 -19.084 5.593
29 17.114 15.384 -5.864 -3.682 5.430
30 32.880 30.078 -7.292 -5.822 5.836
31 30.316 28.692 -4.863 -1.108 5.683
32 25.317 23.307 -5.360 -2.556 5.693
33 21.278 17.926 -10.252 -8.780 4.413
34 24.692 19.871 -15.139 -14.429 4.395
35 19.140 16.372 -9.616 -7.810 5.104
36 21.599 18.726 -10.101 -7.680 4.837
37 25.766 21.717 -10.178 -6.826 5.813
38 26.900 25.464 -3.067 0.537 5.895
39 39.215 37.735 0.576 5.472 7.868
40 29.653 25.839 -11.967 -10.007 6.523
41 24.603 24.219 -1.600 1.987 6.503
42 23.190 19.188 -13.438 -11.190 6.923
43 23.058 17.221 -16.795 -14.658 3.632
44 17.602 14.790 -11.366 -9.221 5.639

Number of
Reverse Arrange- 524.0 523.0 514.0 494.0 601.0
ments of the
Block Means



TABLE VI (Continued)
Mean Velocity Components in the Probe Oriented Coordinate System

TSI #122 §Gill Anemometers TSI #122 Gill Anemometers

U' (fps) 21.750 24.772 21.750 24.772
V' (fps) -6.878 -9.014 -6.878 -9.014
W' (fps) 6.107 6.107
T (oF) 41.609 41.609
B (deg.) 17.550 19.995 17.550 19.995

Means, Variances and Covariances of the Velocity Components in the Mean-Wind
Coordinate System

§TSI #122 gGill Anemometers TSI #122 Gill Anemometers

U (fps) 22.812 26.361 22.812 26.361
V (fps) 0.0 0.0 0.0 0.0
W (fps) 6.107 6.107

u2 (fps) 2  34.863 27.760 35.559 28.320
uv (fps)2  -0.216 -3.393 -0.116 -3.239
uw (fps)2  -0.282 -0.285
ue fps-°F -1.182 -1.182
v2 (fps) 2  55.290 35.451 57.377 36.160
vw (fps) 9.241 9.412
ve fps-oF -0.338 -0.298

w2 (fps)2 20.873 20.983



TABLE VI (Continued)

§TSI #122 gGill Anemometers TSI #122 Gill Anemometers

w- fps-oF 0.219 0.227

62 (oF) 2  1.452 1.468

5Block means removed.

c1



TABLE VII. RESULTS OF RUN 14 MEASUREMENTS: TSI #122 -- GILL ANEMOMETERS.

Block Number Block Means of the Velocity Components in the Probe Oriented Coordinate System
Gill Anemometers TSI #122 Gill Anemometers TSI #122 TSI #122

v(x*) v(x*) v(y*) v(y*) v(z*)

1 27.628 26.230 14.520 15.538 6.729
2 27.143 25.422 14.621 15.258 6.440
3 26.295 24.621 13.140 13.171 5.488
4 18.198 18.103 6.020 6.836 4.866
5 25.149 23.531 10.516 11.415 6.182
6 30.664 29.643 14.508 15.209 7.989
7 25.101 24.066 10.748 10.844 5.784
8 26.115 24.250 16.188 16.088 6.887
9 31.156 29.846 10.589 11.733 6.228

10 26.985 24.673 -1.872 -3.296 7.295
11 31.578 29.201 18.478 18.559 7.719
12 35.638 33.469 19.658 20.491 8.862
13 28.971 27.138 9.979 10.512 7.365
14 26.242 24.870 12.074 12.676 6.943
15 23.638 22.676 10.260 10.612 5.101
16 23.057 21.433 13.697 13.658 5.845
17 31.742 28.310 20.198 19.890 7.806
18 33.644 31.865 17.692 17.668 8.193
19 26.085 23.935 15.668 16.013 6.009
20 25.228 24.271 10.891 11.562 6.729
21 25.775 25.187 2.402 2.172 6.951
22 24.197 23.540 7.788 7.601 7.842
23 28.916 27.966 12.146 13.293 7.141
24 23.690 21.835 -2.679 -4.636 6.452
25 24.901 23.608 -4.543 -5.495 7.405
26 20.647 19.645 -5.765 -6.584 7.069



TABLE VII (Continued)

Block Means of the Velocity Components in the Probe Oriented Coordinate SystemBlock Number
Gill Anemometers TSI #122 Gill Anemometers TSI #122 TSI #122

v(x*) v(x*) v(y*) v(y*) v(z*)

27 25.743 24.216 -5.777 -7.872 7.205

28 19.740 17.967 -7.290 -9.133 7.400

29 26.619 24.414 12.687 14.010 7.710

30 26.126 25.368 4.391 4.101 6.598

31 27.358 25.690 -5.627 -7.820 7.291

32 22.217 20.911 -3.553 -4.903 6.867

33 18.328 16.226 -6.596 -8.732 8.258

34 27.728 26.292 2.808 1.939 6.390

35 28.495 26.844 10.775 10.788 6.362

36 28.370 26.843 8.828 9.566 5.420

37 25.417 23.856 11.189 10.961 7.837

38 34.486 32.053 19.427 20.322 8.298

39 45.617 41.982 25.594 25.250 9.975

40 28.522 27.665 13.154 14.080 9.371

41 37.873 35.921 16.237 17.067 9.696

42 32.370 30.956 4.584 3.508 7.454

43 21.294 20.853 4.196 3.971 3.768

44 19.579 18.862 2.896 2.408 6.338

Number of
Reverse Arrange- 472.0 467.0 558.0 564.0 375.0
ments of the
Block Mean



TABLE VII (Continued)

Mean Velocity Components in the Probe Oriented Coordinate System

5TSI #122 §Gill Anemometers TSI #122 Gill Anemometers

U' (fps) 25.597 27.142 25.597 27.142

Vk (fps) 8.416 8.519 8.416 8.519

W' (fps) 7.035 7.035
T (OF) 55.000 55.000
B (deg.) -18.200 -17.425 -18.200 -17.425

Means, Variances and Covariances of the Velocity Components in the Mean-Wind
Coordinate System

§TSI #122 sGill Anemometers TSI #122 Gill Anemometers

U (fps) 26.945 28.448 26.945 28.448

V (fps) 0.0 0.0 0.0 0.0

W (fps) 7.035 7.035

u2 (fps)2  30.694 27.325 31.365 28.088

uv (fps)2 4.043 2.825 4.231 2.937

uw (fps) -0.486 -0.380
ue (fps-oF) 0.0 0.0

v2 (fps) 2  50.041 35.886 50.761 36.391

vw (fps)2  2.765 2.776
v (fps-0F) 0.0 0.0



TABLE VII (Continued)

§TSI #122 5Gill Anemometers TSI #122 Gill Anemometers

w2 (fps)2  17.705 17.758
we (fps-°F) 0.0 0.0

e2 (oF2 ) 0.0 0.0

§Block means removed.
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Sensor Response

The Gill anemometer utilizes propellers, the shafts of which are

parallel to each of the two perpendicular coordinate axes in the

horizontal plane. The polystyrene propellers have four blades and

are constructed to turn one revolution for each 31.7 cm of air

passing the propeller. Each anemometer contains a miniature

tachometer generator which is turned by the propeller and produces a vol-

tage that is related to the respective wind components. Since the

set of Gill anemometers were rotated with the TSI anemometers, they

were oriented in such a fashion that one anemometer was on the

average in the direction of the mean wind and the second anemometer

perpendicular to the first one both in a horizontal plane. In this

orientation both Gill anemometers were calibrated in the wind tunnel

for velocities ranging from 10 fps to 70 fps and for various angles of

attack varying from -400 to +400 with respect to the mean-velocity

direction.

It is therefore suggested that this set of propeller anemometers

should not be used when the angle of attack is larger than +400 or

less than -400. The velocities should not go beyond the range as

specified.

The velocity components can be obtained from the following

empirical relations which fitted the calibration data very well for

the above ranges in velocity and angle of attack:
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* Ex
v = 0.069 (Cos )0 4  (A-l)

and

V = 0.085 Ey (A-2)

where Ex and Ey are the anemometer output voltages and B is the angle

of attack. Since the angle B is not known at the outset, a simple

iteration procedure is used to calculate the velocity component

vx. No single empirical relation was attempted to be obtained since the

two propellers were always rotated in such a way so that one was

along the mean wind and the other one normal to it.

From the empirical equations obtained from the wind-tunnel calibra-

tion data one can easily see that these anemometers deviate sys-

tematically from the ideal cosine law and no reliance can be placed

on just a single calibration with zero angle of attack.

In turbulent conditions, there can be large differences between

the indicated speed and the actual velocity. The differences arise

from sensor sensitivity to relative wind direction, sensor dynamic

characteristics, and to the data averaging procedure. The difference

between measurements with various common types of anemometers may

exceed 30 percent [62].

The response time of the rotating type of anemometers such as cup

anemometers and propeller type anemometers is always obtained by

letting the anemometers accelerate from rest to some equilibrium

speed of rotation depending on the wind velocity. The response of

the anemometers which are allowed to decelerate from some speed of
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rotation to rest is very difficult to realize in the wind tunnel.

As a consequence the response time is based on the acceleration of

the anemometers and the response for deceleration is assumed to be

similar. However, the cup anemometers and propeller anemometers are

known to accelerate faster than to decelerate with increasing and

decreasing wind velocities respectively. As a result, the calculated

mean velocity is estimated too high with respect to the actual velocity

when the anemometers are used in turbulent winds. In addition, the

output voltage of the anemometers shows a rectified undulation superimposed

on the mean voltage. The frequency and magnitude of this "ripple" depends

on the rate of rotation of the anemometer. If the propeller anemometers

are used for the measurement of fluctuating velocities the digitized

data will be affected by the presence of this undulation.

The calibration data have indicated that the output of the propeller

anemometer is related directly to the component of the velocity parallel

to its shaft. Because of varying response characteristics when the

propeller operates in a accelerating flow as compared to a decelerating

flow, the mean velocity is overestimated (See results in Tables V, VI,

and VII). Because of the limited response characteristics at frequencies

higher than 1 hertz, the propeller anemometers underestimate the variances

and covariances of the different velocity comopnents. This fact is very

well illustrated if the spectra of the velocity components measured by

the Gill anemometers are compared with those measured by the fast-response

TSI anemometer (compare figure 18 with 21 and figure 19 with 22).
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C ----------------------------------------- C

C PPPPPP A RRRRR TTTTTT 11111 C

C P P A A R R T 1 C

C PPPPPP A A RRRRP T 1 C

C P AAAAA RR T 1 C

C P A A R RR T 1 C

C P A A R P T 11111 C

C---------------------------------------------------------------------------
DATA PROCESSING SYSTEM OF A SET OF FOUR DIGITIZED TIME SERIES C

C FOR CALCULATING MEAN,CORRELATION AND TRANSFORMATION MATRIX C

C U(1,I)=X-COMPONENTS VELOCITY OF SENSOR 1,V(A) C

C U(2,I)=Y-CCMPONENTS VELOCITY OF SENSOR 1,V(B) C

C U(3,I)=Z-COMPONENTS VELOCITY CF SENSOR 1,V(C) C

C U(4,I)=TEMPERATURE OF SENSOR 1 C

C------------------------------------------------------------------------C
DIMENSION U(4,8192) tUBBK(44,4),BETA1(44),COV(44,4,4),DEG(4

4 )

DIMENSION UBKT(44),UBTOTL(4),TOTREV(8),TUB(3),STDVIT(4
4 ,8,8)I

IREVARR(44,8),BKVAR(4494,4)
C--------------------------------------------C
C CALL DATA FROM MAGNETIC TAPE C

C NDTBK=DATBK=NUMBER OF DATA IN EACH BLOCK C

C NOBLK=IB=NUMBER OF BLOCKS C

C IX=NDTBK=NUMBER OF DATA IN EACH BLOCK C

C IB=THE BLOCK NUMBER C

C NTS=NUMBER OF TIME SERIES C

C---- ------------------------------------------------------------------
NTS=4
NDTBK=8192
NOBLK=44
BLKNO=NCBLK
I=1



IX=NDTBK
5000 DO 7 I=1,NDTBK

7 READ(I1,lO) U(4,I),U(1,I),U(2,I),U(3,I)
10 FORMAT(4A4)

C --------------------------------------------------------------------- C
C CALCULATE THE MEAN VALUE IN EACH BLOCK WHICH WE MIGHT CALL C

C PIECEWISE MEAN C
C UBBK(IBJ)=tIEAN VALUE IN EACH BLOCKilB=1,2,...,NO8LKv J=1,2,..,4 C
C-------------------------------------------------------------------C

DO 11 J=1,NTS
11 UBBK(IBJI=O.O

I=1
12 00 13 J=1,NTS
13 UBBK(IBJ)=UBBK(IBtJ)+U(JI)

IF(I .EQ. NDTBK) GO TO 14
1=I+1
GO TO 12

14 DAT8K=NOTBK
DO 15 J=1,NTS

15 UBBK(IBJ)=UBBK(IBJ)/DATBK
UBKT(IB )=SQRT(UBBK(18, 1)**2+UBBKI8, 2)**2+UBBK(18,3)**2)

C------------------------------------------------------------------C

C CALCULATE THE TRANSFORMATION ANGLE BETA1 UN EACH BLOCK C
C CALCULATE TNE MEAN SQUARES AND CORRELATIONS IN EACH BLOCK C
C COV=MEAN SQUARES AND.CORRELATIONS IN A BLOCK C
C BKVAR=BLOCK VARIANCES AND COVARIANCES C
C --------------------- ---------------------------------------------- C

BETAI(IB) = ATAN(-1.22475*(UBBK(1,B2)-UBBK(IB,3))/(UBBK(IBI)
1+UBBK(IB,2)+UBBK( 18,3)))
DEG(IB)=(180.0/3.14159)*BETA1(18)
DO 16 K=1NTS
DO 16 J=1,NTS



16 COV(IB,K,J)=0.0
I=1

17 00 18 K=1,NTS
DO 18 L=1,NTS

18 COV (IDK,L)=CUV(IB,K,L)+U(K,I)*U(L,i)
IF(I .EQ. NDTBK) GO TO 191
I=I+1
GO TO 17

191 DO 19 K=1,NTS
DO 19 L=1,NTS

19 COV( I 8,K,L)=COV( IB,K,L)/DATBK
00 192 N=I,NTS
tKVAR ( I NN)=COV( I B,NN)-U IBN)UUBBK(IN)BBK(I ,N)

192 STOVIT(18,NN)=SQRT(ABS(BKVAR(18,N,N)))
IF (IB .EQ. NO8BLK) GO TO 3000

o
IB=18+1
GO TO 5000

3000 CONTINUE
WRITE (6,100)

100 FORMAT(IH1,1X,'BK NO',2X,'MEAN V(A)',2XIMEAN V(B)',2X,'MEAN V(C)'

1,3X,'MAGNITUDE',2X,'MEAN TEMP',2X,'BLK ANG,3X,I'STD DIV VA',2X ,

2'STD DIV VB *2X,'STO DIV VC',2X,ISTD DIV T'//)
DO 101 18=1,NOBLK

101 WRITE(6.102) I8,UBBKUBBK(I1)U,2),UK(IIBB 3),UBKT(IB),UBBK(Ir,
14),DEG(IB),STDVIT(IB,1, 1)STDVIT(IB,2,2),STOVIT(IB,3,3),STDVITIIB,
24,4)

102 FORMAT(3X, 2,2X,F9.3,3(3X,F9.3), 2X, F9.3,3X, F6.2,4(3X,F9.3))
C-------------------- ---------------------------------------------------C

C HERE BEGINS THE CALCULATION OF THE MEAN CR WE MIGHT CALL IT THE C

C GRAND OR ACCUMULATED MEAN,OR SAMPLF MEAN C

C UBTOTL(J)=ACCUMULATED MEANJ=1,2,3,4 C

C----------------------------------------------------------------------C



Dc 20 J=1,NTS
20 UBTOTLJ)=O.O

J=l
21 DO 22 IB=1,NGBLK
22 UBTOTL(J)=UBTTL(J)+UBBK(18,J)

IF(J .EQ. NTS) GO TO 24
J=J+1
GO TO 21

24 DO 23 J=1,NTS
23 UBTOTL(J)=UBTOTL(J)/BLKNO

VTOTL1=SQRT(UeTOTL( J1 )2+UBTOTL(2)**2+UTOTL(3)**2)
WRITE(6,104) ((UBTOTL(J),J=1,NTS),VTOTL 1)

104 FORMAT (///2X,'SAMPLE MEAN=',4Fl2.6,5X,'TOTAL VEL. MAG.=',Fl2.6/)
C---------------------------------------------------------------------C

C HERE BEGINS THE CALCULATIONS OF SAMPLE BETAS C

C BETOL1=THE SAMPLE BETA C
C----------------- - ------------------------- C

BETOLI = ATAN(-1.22475*(UBTOTLf2)-UBTOTL(3))/(UBTOTL(1)+UBTOTL(2)
1+UBTOTL (3)))
BEDEG=(180/.O3.14159)*BETOLI
WRITE(6,103) BETOL1,BEDEG

103 FORMAT(/2X, BETOL1=',FI8.8,5X,'BEDEG=',FIO.5)
C ------------------- ---------------------------------------------C

C HERE CALCULATES THE NUMBER OF REVERSE ARRANGEMENTS FOR ST). DEV. C

C IN EACH BLOCK C
C-------------------------------------------------------------------------C

NSTO=8
NTEST=NCBLK-1
DO 181 I8=1,NOBLK
00 181 I=1,3
K=I+5

181 STDVIT(IBKK)=STOVIT(I8,I,I)



DO 162 IB=1NOBLK
STDVIT( 18,4,4)=UBKTf B)

STDVIT( 18,,5,5)DEG( IB)
DO 182 I=1,3

182 STDVIT(IB,I,1)=U88K(I8,1)
00 194 IB=1,NOBLK
DO 194 I=1,NSTD

194 REVARR(IB1,I).O
18= 1
K=I +1

195 DO 197 II=1,NSTD
DO 197 JJ=KNOBLK
IF (STDVIT(IB1,II,II) .GT. STDVIT(JJ,II,II)) GO TO 196

GO TO 197
196 REVARR(18,II)=REVARR(IB,II)+1.O
197 CONTINUE

IF (IB .EQ. NTEST) GO TO 198
18=IB+i
K=IB+1
GO TO 195

198 CONTINUE
DO 190 J=1,NSTD
T OTREV ( J )=0.0
00 190 IB=1,NTEST

190 TOTREV(J)=TOTREV(J)+REVARR(18,J)
WRITE(6,201) (TOTREV(J),J=1,NSTD)

201 FORMAT(//1OX,TOTAL NO. OF REV. ARR.==',8F10.1)
STOP
END



C----------------------------------------------------------------------
C THIS PROGRAM IS USED TO APPLY THE MOVING-AVERAGE AND DIFFERENCING
C HIGH-PASS FILTER TC THE ORIGINAL TIME SERIES. C
C------------------------------------------------------------------------C

DIMENSION U(4,16384),UBBK(4,8192)
C ------------------------------------------------------------- C

C NOBLK=NUMBER OF BLOCKS CONSEQUENTLY FILTERED. C
C NDATA=NUMBER OF DATA POINTS TO BE USED AT THE START OF FILTERING
C PROCESS. C
C------------ ---------------------------------------------------- C

NDATA=16384
NOBLK=43
NDTBK=NDATA/2
NHALF=NOT8K/2
NTS=4
18=1
DAT BK=NOTBK
NEW=NDTBK+1
DO 1 I=1,NDATA

1 READ(10,2) U(4,I),U(1,I),U(2)1I,U(3,I)
2 FORMAT(4A4)

GO TO 2000
1000 DO 3 I=NEWNDATA

.3 READ(10,2) U(4,I) U( 1p),U(2,I)jU(3,I)
2000 DO 4 J=1,NTS

4 UBBK(JI )=0.0
DO 5 J=1,NTS
DO 5 I=1,NDTBK

5 UBBK(Jvl)=UBBK(J, )+U(JI)
DO 6 I=1,NTS

6 UBBK(I,1)=U1BK(I,1)/DAT3K



00 7 I=1,NTS
J=NOTBK+1

7 UBBK(I11)=UFBKfI.tl)+(U(I J)-U(I1) )/DATBK
DO 8 J=1,NTS
DO 8 I=2,NDTBK
K=I-1
L=NDTBK+I

8 UBBK(J, I)=UBBK(JK)+(U(J,L)-U(JI ))/DATBK
DO 9 K=1,NTS
DO 9 I=1,NDTBK
M=I
J=NHALF+M

9 U(K, I )=UfKJ)-UBBK(KI)
DO 10 I=1,NDTBK

10 WRITE(11,2) U4,tI),U(1,Il)U(2,I),U(3,I)
DO 11 LL=1,NTS
DO 11 I=1,NDTBK
M=I
J=NDT BK+M

11 U(LL,I)=U(LLJ)
IF (IB .EQ. NOBLK) GO TO 5000
IB=18+1
GO TO 1000

5000 CONTINUE
WRITE(6,5050) IB

5050 FORMAT (20X,'NUMBER OF BLOCKS COMPLETED'l,4)
STOP
END



C***4x*****'~**4$ * ********P A TP 2*
C--------------- -------------------------------------------------- C

C PPPPPP A RRRPR TTTTTT 22222 C

C P P AA R R T 22 C

C PPPPPP A A RRRRR T 2 2 C

C P AAAAA RR T 2 2 C

C P A A R RR T 22 C

C P A A R R T 22222 C

C------------------------------------------------------------------------ C

C DATA PROCESSING SYSTEM CALCULATING VARIANCES AND COVARIANCES C

C BASED ON THE DATA READ FROM THE TAPE WITH EQUALLY-WEIGHTED C

C RUNNING MEAN APPLIED. SAMPLE MEAN AND BETA ANGLE ARE READ FROM C

C PREVIOUS PROGRAM. THE PRINTED VALUES ARE THE STATISTICAL VALUES C

C IN THE MEAN WIND COORDINATE SYSTEM. C

C THE MEANING OF THE CODE NAMES MAY BE READ FROM DATPI. C

C-------------------------------------------------------------------C
DIMENSION U(4,8192),COV(43#,4,4),UBTOTL(4),SCOV(4,4),TUB(3)
DIMENSICN E1(4,4),UMEAN(4),COVMEN(4,4),TBINT(4)
DIMENSICN XBAR(4),XSUM(4)
NTS=4
NDTBK=8192
NOBLK=43
BLKNO=NOBLK
DATBK=NOTBK
IB=1
UBTOTL(1)= 6.128789
UBTOTL(2)= 3.733873
UBTOTL(3 =16.187836
UBTOTL(4)=39.109543
BETOLL= 0.529701

C---------------------------------------------------------------------------
C SINCE THE MEAN HAS BEEN REMOVED SC WE CALCULATE THE MEAN SQUARF C



C VALUE WHICH SHOULD BE THE VALUE CLOSE TCO THE VARIANCES AND C

C CVAR I ANCES C

C ------------------------------------------------------------ C

5000 00 7 I=1,NDTBK
7 READ(10,1O) U(4,I),UtiI),U(Z,I),U(3,1)

10 FORMAT(4A4)
C-----------------------------------------------C
C HERE THE SMALL NEAR ZERO MEANS ARE CALCULATED AND SUBTRACTED FROM

C THE DATAS IN THE BLOCK. C

C---------------------------------------------------------------------C
00 81 I=I,NTS

81 XSUM(I)=0.O
00 82 J=1,NTS
DO 82 K=1,NDTBK

82 XSUM(J)=XSUM(J) + U(JK)
DO 83 I=1,NTS

83 XiAR( I)=XSUM(I)/NOTBK
00 84 J=1,NTS
DO 84 I=1,NDTBK

84 U(JI)=U(JI)-XBAR(J)
C---------------------------------------------------------------------C

C BLOCK VARIANCES AND COVARIANCES ARE CALCULATED IN THE FOLLOWING C

C--------------------------------------------------------------------- C

DO 16 K=t1NTS
00 16 J=1,NTS

16 COV(I8,K,J)=0.O
I=1

17 00 18 K=1,NTS
DO 18 L=1,NTS

18 COV (IB,K,L)=COV(lIB,K,L)+U(K,I)*U(L,1)
IF(I .EQ. NDTBK) GO TO 191
I=I+1



GO TO 17
191 DO 19 K=1,NTS

DO 19 L=1,NTS
19 COV(IBK,L)=COV(IBK,L)/DATBK

IF (IB .EQ. NOBLK) GO TO 3000

13=18+1
GO TO 5000

3000 CONTINUE
C-------------- ---------------------------- C

C HERE BEGINS THE CALCULATION OF THE SAMPLE VARIANCES AND COVARIANCES

C FOR THE WHOLE LENGTH OF THE DATA C

C SCOV=SAMPLE VARIANCES AND COVARIANCES C

C------------------------------- C

DO 25 K=1,NTS
DO 25 J=1,NTS

25 SCOV(K,J)=O.O
IB=1

26 DO 27 K=1,NTS
DO 27 L=1,NTS

27 SCOV(KL)=SCOV(K,L)+COV(I18,KL
IFIB .EQ. NOBLK) GO TO 28
IB=IB+1
GO TO 26

28 DO 29 K=1,NTS
DO 29 L=1,NTS

29 SCOV(K,L)=SCOV(K,L)/BLKNO
C---------------------------------------------------C
C HERE BEGINS THE TRANSFORMATION OF MATRIX C

C EI(4,4 IS THE MATRIX TRANSFORMATION FROM THE SENSOR DIRECTION C

C TO THE MEAN WIND DIRECTION C

C--------------------------------------------------------------------C
00 43 I=lNTS



UMEAN (I )=0.O
DO 43 J=1,NTS
E1(I,J)=O.O

43 COVMEN(I,J)=O.O
El(1,)=0.57735*COS(BETOLl)
El( 1, 2)=0.57735*SIN(BETOL )
El( 1,3)=-0.81650
FI(2,1)=0.57735*COS(8ETOLl)-0.70711*SIN(BETOL1)
E1(2, 2)=0.57735*SIN(BETOL1) +O.70711*COS(BETOL1)
EI(2,3)=0.40824
E1(3,1)=0.57735*COS(BETOL1)+0.70711*SIN(BETOLl)
El(3,2)=0.57735*SIN(BETOL )-0.70711*COS(BETOLI)
E1(3,3)=0.4C824
El( 4,4)=1.0

C------------------------------------------------------------------C

C UMEAN(I) IS THE MEAN WIND VELOCITY COMPONENTS & TEMPERATURE C
C COVMEN(IJ)IS THE VARIANCES AND COVARIANCES OF WIND TURBULENCE IN
C THE MEAN WIND DIRECTION. C
C--------------------------------------- C

I=1
46 DO 45 J=1,NTS

UMEAN(I)=UMEAN(I)+E1(J,I)*UBTOTL(J)
DO 45 K=I,NTS
DO 45 L=INTS

45 COVMEN(I,J)=COVMENI,J)+El(K,Il*E1(LJ)*SCOV(K,L)
IF (I .EQ. NTS) GO TO 47
I=I+1
GO TO 46

47 CONTINUE
C ----------------------------------------------------------------------- C
C WRITTEN STATEMENTS C
C---------------------------------------------------------------------------C



WRITE( 6105)
105 FORMAT(IHI,4X,'BEFORE TRANSFORMATION't27X,MEAN WIND DIRECTIONS'/)

WRITE(6,106)
106 FORMAT(2X,'CURRELATION NO.',3X,'SAMPLE VAR. & COVAR.',1OX,'VAR.E

ICOVAR.l,5X, VELOCITIES'/)
DO 107 K=1,NTS
DO 107 L=1,NTS

107 WRITE(6,108) K,LSCOV(K,L),COVMEN(KL),UMEAN(K)
108 FORMAT (7XI2,3X1I2,8XF1O.3,15XF1O.3,8XF8.3)

VTOTL= SQRT(UBTOTL( 1)**2+UB TOTL 2 **2+UBTOTL (3)**2)
DO 32 I=1,3

32 TBINT(I)=SQRT(SCOV(II))/VTOTLI
WRITE(6.207) (TBINT(I),I=1,3)

207 FORMAT(///2X,'TURBJLENT INTENSITIES=',3F10.6)
DO 113 1=1,3

113 TUB(I)=SQRT(COVMEN(I,IJ/VTOTL1
WRITE(6,114) (TUB(I),I=1,3)

114 FORMAT (///2X,'TURBULENT INTENSITY IN THE MEAN WIND DIRECTION=',
13F8.4)
STOP
END



C----------------------------------C
C -------- TRANSFORM THE DATA FROM THE SENSOR ORIENTED DIRECTION TO THE C

C ------- MEAN WIND DIRECTION FOR SPECTRUM CALCULATIONS-1192 & 1193-----C

C THE MEANING OF EACH CODE NAME MAY BE SEEN FROM DATP1. C

C-------- ------------------------------------------------------ C

DIMENSION U(4,8192),V(4,8192),E1(4,4)
NTS=4
NDTBK=8192
NOCHK=1
NOBLK=38
BETOLI= 0.6165

C --------------------------------- TRANSFORMATIONS-----------------------C
DO 3 I=i,NTS
DO 3 J=1,NTS 00

3 El(I,J)=O.O
Ell, 1)=0.57735*COS(BETOLI)
El 1,2)=0.57735*SIN(BETOLI)
El(1,3)=-C.81650
El ( 2,1 ) =0.57735*COS ( BETOL1 I-0.70711*SIN( B ETOL1)
E1(2,2)=0.57735*SIN(BETOLl)+0.70711*COS(BETOLI)
E1( 2,3)=0.4C824
E(3,1 )=0.57735*COS(BETOLI)+0.70711*SIN(BETOLI)
E1 32) =0. 57735*SIN(BETOL )-0.70711COS( BETOL1)
E1(3,3)=0.40824
E1(4,4)=1.0

1000 DO 1 I=1,NDTBK
1 READ(10,10) U(4,I),U(1,I),U(2tII,U(3,1)

10 FORMAT(4A4)
00 2 I=1,NTS
DO 2 J=I,hDT3K

2 V(I,J)=O.O



I=1
46 DO 45 K=1,NDTBK

DO 45 J=1,NTS
45 V(IK)=VI,K) + El(JtI)*U(J,K)

IF (I .EQ. NTS) GO TO 47
1=1+1
GO TO 46

47 CONTINUE
DO 9 I=1,NDTBK

9 WRITE(11,11) V(4,I),V(1,[),V(2,II,V(3,I)
11 FORMAT (4A4)

IF (NOCHK .EQ. NOBLK) GO TO 2000
NOC HK =NOCHK +1
GO TO 1000

2000 CONTINUE
WRITE(6,999) NOCHK oR

999 FORMAT(5X,'NUMBER OF BLOCKS TRANSFORMED',l5)
STOP
END



C .*4 ,44***** * **** **m**POWER SPECTRUM*******m********* ***** 'C

c - --- - - - - - - - -- -- -- -- -- ----------------"-------"------ I

C THIS PROGRAM CALCULATES THE POWER SPECTRAL DENSITY ESTIMATES C

C INCLUDING TFE DATA TAPERING, FAST FOURIER TRANSFORM AND SMOOTHING

C TECHNICUES. C

C---------------------------------------- ---------- C
DIMENSICN U(8192),SPI(4097 SP2(4097),PS11(94),SPP(4097)
DIMENSICN FLEQf94),FNEQ(94),FMEQ(94)
DIMENSION F(8192),D(820),H(820)
DIMENSICN C(2049),X(8192),Z(2048),V(8192)
DIMENSION FREO(94),FLOG(94),PNORM(94)
COMPLEX*8 E,X,Z

C ----------------------------------------------------------- C

C NDTBK=NUMBER OF DATA POINTS IN EACH BLCCKED TIME SERIES C

C CATBK=NCTBK C
C NOBLK=hUMBER OF BLOCKS USED IN THE SPECTRAL ESTIMATE. C

C MAVE=NUMBER OF SPECTRAL VALUES AS A RESULT OF COMBINED SMOOTHING C

C NTS=NUMBER OF TIME SERIES TO BE PRECESSED C

C NOWIO=NUMBER OF DIFFERENT DATA WINDOWS TO BE TAPERED C

C NCK=CCNTRCL NUMBER USED FOR NUMBER OF DATA WINDOWS C

C KUUNT=T-E CCNTROL NUMBER CEPENOS ON TIE TIME SERIES NEEDED. C

C DIVIS=MCNDO=1/10 NUMBER OF TAPERING PCINTS C

C------------------------------------------------------------------------C
NDTK= 81 32
DATBK=NDTBK
iHALF=NECTBK/2
HALFN=NHALF
MAVE=94
NP=94
CN= iAVE
CC=C N
L )=CN



D T=0. CC5
NO3LK=43
ELKNO=NCBLK
NTS=2
NCK=1
NOWID=I
KOUNT=l
PI=3.1415S
MGDNO=820
DIVIS=MCDON
NHF=NHALF+1
WRITE(6,201)

201 FORMAT(IHI,50X,'COSINE TAPERING WINDOw'//)
C----------------------------------------------------------------------C
C D(I) AND H(I) ARE THE END TAPERING FUNCTION IN COSINE TAPER DATA C
C WINDOW. F(I) IS THE NUMBER ONE DATA WINDOW USED FOR TAPERING C
C ---------------------------------------------------------------------- Cw

00 12 I=1,NDTRK
P=I

12 F(I) = 1.V-((P-(DATBK-1.0)/2.0)/((DATBK+1.0)/2.0))**2
DU 14 I=1,MCDNO
P=I

14 D(I)=C.5*(1.0-CCS(PI*P/IVIS))
DO 16 I=I,MCDNO
P=

16 H(I)=C.5-*(1.O-CCS(PI*(DATBK-P)/DIVIS))
C--------------------------------------------------------
C THIS PART CALCULATES THE FPlEQUECIESOF IS THE LLw~ST C
C C;NYC IS THE NYQUIST FREQUENCY. £ANG =0BAN IDTH C
C FL E=FREQ=FNE(=FM(FQ=DIFFERE.T FEPRESENTTIrNCS f:F FPEQUF UNCY VALUES
c--------------------------------------------------------------------C

.F= 1.0/(C A T 8K'T)



DNYQ=1. C/(2. O*DT)
EANDWC=CN*DF
: 1= DF

03=02
CO 66 1=1,8
P=I

66 FLEQ(I)=P*DF
DO 61 1=9,38
P=I
L=P-6.0

61 FLEQ(I)= (4.0*(Q-1.0) + 2.5)*DF
DO 62 I=39,62
Q=I
P=Q-6.0

62 FLEQ(I)=(16.0*(P-25.0) +9.5)*
DC 63 I=63,86
P=I
R=P-6.0

63 FLEQ( I= (64.0*(R-49.0) +33.5)*D2
CO 64 I=87,S4
R=I
SS=R-6.0

64 FLEQ(I)= (256.0*(SS-73.0C) +129.5)*D3
DO 65 [=1,NP
FREQ( I )=FLEQ(I)
FNEQ( )=FLEQ(I)

65 FMEI(I)=FLEQ(I)
C ---------------------------------------------------------------------- C
C DATA READING FRUM TAPE C
C kCUNT=TfE CcNTROL VALUES US.D TO PED ; IFFFRENT DATA SETS C
C-------------------------------------------------------------------------C



DO 104 I=1,NHF
104 SP2(1)=C.O

4000 IB=1
GG TO (1,2,3), KOLNT

I READ (10,11) U
11 FORMAT(A4)

GO TO 1CC
2 REwINC IC
4 PEAD(10,21) U

21 FORMAT(4Y,A4)
GO TO 1000

3 REWINC 10
5 READ(1I,31) U

31 FORMAT(12XA4)
1000 CONTINUE

C----------------------------------------------------------------------C
C FILTERING OF THE TIME SERIES WITH MOVING AVERAGE ALREADY APPLIED C
C TO ADJUST TFE TIME SERIES TC NEAR ZERO MEAN. SMALL MEAN VALUES C
C ARE AGAIN CALCULATED AND SUBTRACTED FRCM THE VALUES.OF DATA POINTS
C IN EACH BLOCK.
C---------------------------------------------------------------------C

XSUM=O.0
CC 81 I=1,NDTBK

81 XSUM =U(I) +XSUt
XbAR=XSLM/DATFK
DC 82 I=1,NOTBK

8.2 UI)=C(I) -X6AR
C ---------------------------------------------------------------------- C
C STAT-MENTS LSED T'C NULTIPLY DIFFFPFrT WINDOWCS C
C----------------------------------------------------------------------C

(0 Ti (14,*,145),NChID
144 I:0 15 I=1,MCODN



00 17 I=I,MCDNO
K=I+7372

17 U(K)=L(K)*H(I)
GO TO 500

145 00 18 K=I,NCTBK
18 U(K)=UIK)*FfK)

5)0 CONTINUE
C------------------------------------------------------------------------- C
C CALCULATE THE FOURIER COEFFIENTS BY USING FAST FOURIER TRANSFORM C
C----------------------------------------------------------------------C

DO 99 K=,NIOTBK
99 V(K) = 0.0

CALL FFT (U,V,X)
C- ----------------------------------------------------------------------- C
C CALCULATE THE SPECTRAL VALUES TOTALING 4097 POINTS. THESE VALUFS
C ARE ACJLSTED BY A SCALE FACTOR DUE TO COSINE TAPERING. LOOP 103 C
C IS TO SUAMING SEGMENTLY ALL THE BLOCKEC SPECTRAL VALUES. LOOP 109
C IS TO AVERACE THEM. SPP(I) ARE THE VALUES SAME AS SP2(I). C
C---------------------- ------------------------------------------- C

00 102 I=1,NHF
102 SPL(I )=2.C*CT*(REAL( X ( I ))**2+AIAG( X ( I )) *2)/0ATLK

IF (NCWID .NF. 1) GC TO 98
c0 101 K=1,NI -F

101 SPI(K) =(1.0/0.875)*SP1(K)
98 00 103 I=1,NHF

103 SP2(1)=SP2(I)+SPI(I)
IF (18 .EQ. NC8LK) GO TO 6000
18=IB+1
GG TG (1,4,5), KCUNT

600 CON1TINUE
,C 1)S I=I,NHF



1.9J SP2(I)=SP2(I )/LKNO
00 121 I=1,NHF

121 SPP(I)=SP2(1)
WRITE(6,222) (SP2( I), I=1,NHF)

222. FORMAT(5X,IOF1O.4)
C -------------------------- ------------------------------- C
C FOR FREQUENCY SMOOTHING,THE ESTIMATED SPECTRUM MAY BE CONSIDERED C
C AS REPRESENTING THE MIDPCINT CF THE FREQUENCY INTERVAL
C SINCE ONLY HALF NUMBER OF THE POINTS ARE UNIQUE AFTER TRASFORM C
C THE SPECTRAL AVERAGE IS PERFORMEG BASEC UPON THE TOTAL OF 4096 C
C VALUES. CCNSEQUENTLY 94 SMOOTHED SPECTRAL VALUES ARE CALCULATED.
C ---------------------- ---------------------------------------- C

DC 22 1=9,94
22 PS11(I)=C.O

00 71 K=2,9
J=K-1

71 PS11(J)=SP2(K)
L=10
MA=13
M4=4
K=9

24 DO 23 I=L,MA
23 PS11(K)=PSII(K)+SPP(I)

IF (K .E;. 38) GO TO 25
K=K+1
L=L+4MA
MA= A+M4
GO TO 24

25 CONTINUE
7PC 42 J=9,38

42 PSII(J)=PSII(J) /4.C
L=130



M8=145
M16=16
K=39

52 DO 53 I=L,MB
53 PS11 K)=PS11K)+SPPI I)

IF (K .EC. 62) GO TO 54
K=K+1
L=L+M 16
YB=MB+MI6
GO TO 52

54 CONTINUE
DO 43 J=39,62

43 PSI1(J)=PS11(J)/16.0
L=514
ItC=577
P64=64

K=63
55 00 56 I=L,MC
56 PS1( K)=PS11(K)+SPP(I)

IF (K .FC. 86) GC TO 57
K=K+1
L=L+M64
MC= MC+M64
GO TO 55

57 CONTINUF
5' 44 J=63,86

44 PSt (J)=PS l1(J) /L4.0
I. =205C
SL)U= 2305
F25=256

5b CiI 5', I=L,W1!



59 PS1I(K=PSI1( K)+SPP(I
IF (K .EQ. 94) GC TO 60
K=K+1
L=L +M 2 56
VD=MD+M256
GO TO 58

50 CONTINUE
DO 45 J=87,94

45 PSII(J)=PSI(J)/256. C
D0 27 LL=INP

27 FLOG(LL)=ALCG(FPRE(LL))
DO 28 I=1,NP

28 PNURM (I )=FREQ ( I )*PS11( I)
C ---------------------------------------------------------------------- C
C ALL TIE WRITTEN STATEMENT C
C-------------------------------------------------------------------------C

IF (NOWID .EQ. 2 .AND. KGUNT .EC. 1) GO TO 32
GO TO 36

32 WRITE(6,33)
33 FORMAT(1H1,5OX,WINDOW NUMBER i'//)
36 CONTINUE

WRITE(6,1C6)
106 FORMAT (1OX,'SMOOTH E D SPECTRUM',5X,'FREQUENCY',5X,' F R E. F. NULTPID

1SPECTRUV',5X,'LOG OF FREQ.'/)
DC 107 I=1,NP

107 WRITE (6,ICE) PS11(I)tFREQ(I),PNORM(I),FLCOG(1
108 FORMAT (14X,F1O.4,8XX,F8-.44, 8X,F8.4)

C ---------------------------------------------------------------------- C
C THE CCNTROLLED VALUE CF NTS WILL CBTAIN THE CALCULATICNS OF C
C CIFFERENT NUMBER OF TIME SERIES. THE CONTROLLF-0 VALUE UF NCK C
C WILL CALCLLATE DIFFERENT DATA WINDCWS. C
C------- ------------------------------------------------------------------- C



IF (KCUNT .EQ. NTS) GO TC 3000
KCUNT=KCUNT+1
D) 110 I=1,NHF

110 SP2(I)=O.O
GC TC 4000

303,0 LONTINUE
IF (NCWIO .EQ. NCK) GO TO 37
NOWID=NCWID+1
00 111 I=I,NHF

11I SP2(I)=0.0
REWIND 10
KOUNT=1
GG TO 4000

37 CONTINUE
STOP
END
SU3ROUTINE FFT {(UV,X)
IMPLICIT REAL*4(A-H,P-Z)
SIMENSICN C12049),X(8192),Z(2048),U(81S2),V(8192)
COMPLEX*8 EX,Z

C ---------------------------------------------------------------------- C
C N = TCTAL NC. CF DATA
C NS = STAGE NO
C NJ = TOTAL NO. CF ACCITION ( AND SUPTRACTION ) STEPS IN EACH STAGE
C NU = TOTAL NO. OF ADDITIONS ( OR SUET. ) IN ONE ADDITION STEP
C IA = STARTING NO. OF FACH ADDITION STEP
C NT = EiNDING NC. OF EACH ACOITION STEP
C J = A9DITICN STEP NC. IN EACH STAGE
C I , KA = SUBSCRIPT OF NEW X IN EACH STAGE
C INVERT=1 IS USED TC OBTAIN THE INVERSE FOURIER TRANSFORM. FOR ANY
C CTHER NUMPERS OF INVERT INDICATES FCUPIFP TRANSFORM. C
C---------------------------------------------------------------------------C



INVERT=3
N=8192
NN=N/ 2
NM=NN/2
KK=NN+1
vM=NM+1
CALL COSINE (N,NNNt,C)
CO 12 I=1,N

12 X(I)=CPPLX(U(I) ,VI))
NS=I
J=NN

N U=
1 NI=NJ/2

IA=1
NT=NU
DO 71 L=1,N-
LA=L+NM

71 Z(L)=X(LA)
C--- ------------- --------------------------------

NA=MM
KB=
I(A=KK

00 2 J=1,NJ
NA=NA-NL
N 8= NB+ nU
IF (J-NI) 41,42,43

41 E=CMPLX(C(NA),-C(NB))
,GO TO 42

43 E=CMPLX(-C(NA),-C(NB))
42 C00 I=IA,NT

IF (J.LE.NI) GO TC 81



IC=I-KM
IB=I+NN
K A=KA+1
K=KA+U
X(KA)=Z(ICI+X(IS)
X(K )=(Z(IC)-X(IB))*E
GO TO 9

81 IC=MM-I
I B= IC+
KA=KA-1
K=KA- NU
IF (J.EC.hI) GO TC 82
X(KA)=(X(IC)-X(IB))JE
GO TO 83

82 X(KA)=X(ICi-X(IB
83 X(K)=X(IC)4X(I[BI

9 CONTINUE
I A=I A+NU
NT=NT+NU
IF (J.NE.NI) GO TO 22
NA=MM+
NB= 1-NU
KA=NN
GO TO 2

22 KA=K
2 CONTINUE

C-----------------------------------------------------------------------C
IF (NJ.EQ.2) GO TO 11
NU=2**NS
NS=NS+1
NJ=NI
GO TO 1



11 CO .I I=1,NNh
I 3= I+NN
F=XI I),X(IB)
X( I)=X(I)-X(IB)

21 X( I )=E
C---------------------------------------------------------------------- C
C THE NEXT EIGHT CARDS ARE USED CNLY IF INVERSE FOURIER TRANSFORM IS
C NECESSARY. IN THIS CASE, THIS SUBROUTINE IS USED TO OBTAIN A REAL
C TIME SERIES U(I) INSTEAC OF USING FGR SPECTRAL CALCULATIONS. C
C ---------------------------------------------------- C

IF (INVERT .EQ. 1) GO TO 27
GO TO 28

27 CC 23 I=1,N
23 X(I)=X(I)/N

U (1) = REAL (X(1))
CO 25 1=2,N

25 U (1) =REAL(X(N-I+2))
28 CON TINUE

RETURN
ENO
SUBROUTINE CUSINE (N,NN,NM,C)
DIMENSICN C(2049)
TN=NN
ANG=3.1415927/TN
I NTR=N/8
CS=COS (ANG)
SN=SIN (ANG)
C(1 )=1.
II = "' +1
C(II)=O.
P(C 39 J=1,INTF
JI=J-l



J J=N M -42- J
C(JI)=C(J)*CS-C(JJ)*SN
JM=NM+ 1-J

39 C(JM)=C(J)*SN4+C(JJ)*C
RET U RN
F ND



C----------------------------------------------------------------------C
C IHIS PRCGPAM CALCULATES THE PCWER SPECTRUM, CO-SPECTRUM, QUADRATU-
C PE SPECTRUM, CROSS SPECTRUM, PHASE ANGLE AND COHERENCY FUNCTION C
C PY GOING THROUGH DATA TAPERING, SPECTRAL SMOOTHING TECHNIQUES. C
C----------------------------------------------------------------------C

DIMENSICN U(8192),V(8192),SPA(407),SPB(4097),SPC(4097),SPD(4097),
ISPI(4097),SP2(4097),CSP(4097),QSP(4097),FREQ(94j,FLOG(94)

DIMENSICN AA(1),BB(1),URE(4097),UIM(4097),VRE(4097),VIM(4097)
DIMENSICN F(8192),D(820),H(820)
CIMENSICN C(2049),X(81923,Z(2048)
DIMENSICN PS11(94),PS22(94),CS12(94) 12(94) 94)
LIMENSION AMPI2(94),COH12(94),PHS(94),CEGPS(94)
DIMENSICN PNCMI(94),PNOM2(94),CSQSONOM94)
DIMENSICN FLEQ(94),FNEQ(94),FMEQ(94)
CIMENSICN CROS(94),CRSNM(94),CRS( 0)
COMPLEX AA,88
COMPLEX*8 E,X,Z

C-------------------------------------------------------------------------
C EXPLANATION OF THE DIFFERENT SYMBOCLS USED IN THIS PROGRAM CAN BE C
C CBTAINEC FRCM THE POWER SPECTRUM PROGRAM. C
C------------------------------------------------------------------------ C

NDOTBK=8192
CATBK=NCTBK
NHALF=NCTBK/2
HALFN=NHALF
NHF=NHALF+1
MAVE=S4
NP=94
CN=WAVEF
N O3 LK=43
HLK C=NCBLK



NTS=1
NCK=I
NOWID=1
KOUNT=1
DT=0.005
PI3. 1415S
GCDNO=820

DIVIS=MCDC
WRITE(6,201)

201 FORMAT(IHl,50X,'COSINE TAPERING WINDOW'//)
C---------------- ------------------------------ ---------- C

C WINDOW CALCLLATIONS C

C ---------------------------------------------------------------------- C

DO 12 I=1,NDTBK
P=I

12 F(I) = 1.0-((P-(DATBK-1.0)/2.0)/( (DATBK+1.0)/2.0))**2
00 14 I=1,MCDNO
P=I

14 D(I)=C.5*(1.0-COS(PI*PICIVIS))
DO 16 I=1,MCDNO
P=I

16 H(I )=0.5*( .0-CUS(PI*(DATBK-P)/DIVIS))
C --------------------------------------------------------------------- C

C THIS PART CALCULATES THE FREQUENCIES
C---------------------------------------------------------------------------- C

CF=1.0/( CATBK*DT)
ENYQ=1.C/(2.0*DT)
BANDWC=CN*DF
01=0F
12=01
03=D2
DO 66 I=1,8



P=I
66 FLEQ( I )=P*DF

00 61 I=G,38
PPP=l
Q=PPP-6.0

61 FLEQ(I)= (4.0*|Q-1.0) + 2.5)*DF
00 62 1=39,f2
SS= I
P=SS-6.0

62 FLEQ(I)=(16.0*(P-25.0) +9.5)*01
DO 63 1=63,86
RFLP=I
R=RLP-6.C

b3 FLEQ(I)= (64.0*(R-49.0) +33.5)*D2
DO 64 1=87,94
PQR= I -z
SS=PQR-6.0

64 FLEQ(IJ= (256.0*(SS-73.0) +129.5)*D3
00 65 I=I,NP
FREQ(I)=FLEC(I)
FNE Q( I )=FLEC(I )

65 FMEQ( I)=FLEQ(l)
00DO 27 LL=1,NP

27 FLG(LL) = ALOG(FREQ(LL))
C------------------------------------------------------------------------C
C DATA READING FROM TAPE C

C-------------------------------------------------------------------------
DO 104 I=1,NHF
SPI(I)=O.0
SP2 (1)=0.0
CSP(TI)=C.O

104 USP(I)=C.C



4010 I3=1
GO TO (1,2,3), KCUNT

C----------------CROSS SPECTFUM FOR U AND W --------------------------- C
1 D00 10 I=1,NCTK

I0 READ (10,11) U(I),V(I)
11 FORMAT(4X,A-4, 1 X,A4)

GG TO 1000
C ---------------- CROSS SPECTRUM FOR U AND V ---

2 REWIND 10
4 CC 20 I=1,NETBK

20 REAO(10,21) U(I),V(I)
21 FORMAT(4X,2A4)

GO TO 1000
C----------------CROSS SPECTRUM FOR T AND W -------------------------- C

? REWIND 10
5 DO 30 I=1,NDTBK

30 READ(10,31) U(I),V(I)
31 FGRMAT(A4,8X,A4)

1000 CONTINUE
C-------------------------------------------------------------------------C
C NEAR ZERO MEAN VALUES ARE REMOVED FROM THE FILTERED TIME SERIES. C
C-------------------------------------------------------------------------

XSUMU=0. 0
XSUMV=O.0
C, S1 I=I,NPT6K
XSUMIU =U(I) +XSUMU

R1 XSUMV =V{IJ +XSUMV
XBARU=XSUU/)OA TK
XPARV=XSUPV/DATBK
r,(U 82 I=I,NCTBK

U(I) =U(I) -X[ARU
q- V(I=V(II) -XHAPV



C----------------------------------------------------------------------
C APPLY DIFFERENT DATA WINDOWS TO THE DATA POINTS. C
C------------------------------------------------------------------------- C

GO TO (144,145),NOWID
144 CO 15 I=IvCCNC

V(1)=V( I)*D(I)
15 U(I)=U(I)*D(I)

DO 17 I=1,PCDNO
K=I+7372
V(K)=VfK)*HlI)

17 L(K)=U(K)*H(I)
GO TO 5CC

145 DO 18 K=1,NCTBK
V(K)=V(K)*F(K)

13 U(K)=U(K)*F(K)
500 CONTINUE

C-------------------------------------------------------------------------
C THE FAST FOURIER TRANSFORM IS CALCULATED BY STORING U(I) IN THE C
C REAL PART AND V(I) IN THE IMAGINARY PART. C
C------------------------------------------------------------------------- C

CALL FFT (U,V,X)
AA(1)=CPFLX( REAL(X(1)),O.O)
b (1)=CMPLX(AIMAG(X(I)),0.0)
UR E (1)=REAL( A A ))
UIM(1)=Al AGtAA(I))
VRE(1)=REAL(BH 1))
VIM(1)=AIMAG(LB(1))
DC 444 I=2,NHF
K=NDTPK-I+2
URE(I) = REAL(( X ( I ) + X (K) )/2.0)
UIM(M) =AIMGf(( X ( I ) - X (K) )/2.C)
VREEI) =AI'AG(( X ( I ) + X (K) )/2.0)



444 VIM(I) =-REAL4( X ( I ) - X (K) )/2.0)
C3J 102 I=I,NHF
SPA(I)=2.0*CT*(URE(I)**2 + UI(lI)**2)/DATBK
SP (I )=2.0*DT*( VRE( )**2 + V I f(I)**2)/DATBK
SPC(I)=2.0*CT*(URE(I)*VRE(I) + UIM(I)*VIMII))/DATBK

102 SPD(I)=2.0*DT*(URE(I)*VIM(I) - UIM(.I)*VRE(I))/DATBK
IF (NOWID .NE. 1) GC TO 98
00 101 =l,bHF
SPA(K)=1.0/0.875)*SPA(K)
SPB (K)=(1.0/G.875)*SPB8K)
SPC(K)=(1.0/0.875)*SPC(K)

101 SPD(K)=(1.0/0.875)*SPD(K)
98 00 103 I=1,NHF

SPI(I)=SPI(I) + SPA(I)
SP2(I)=SP2(I) + SP8(I)
CSPII)=CSP(I) + SPC(I)

103 QSP(I)=QSP(I) + SPD(I)
IF (IB .EQ. NOBLK) GO TO 6000
18=18+1
GO TO (1,4,5), KOUNT

6000 CONTINUE
C--------- ------------------------------------------ C
C FOR SEGMENT SMOOTHING, SUMMING NUMBER OF THE CORRESPONDING POINTS
C IN EACH CESIGNATED BLOCKS. ALSO AVERAGED THE SUMMED VALUES. C
C-------------------------------------------------------C

DO 109 I=1,NHF
SPi(I)=SPL(I)/BLKNO
SP2(1)=SP2(1)/BLK\C
CSP( I )=CSP( I )/BLKNO

109 QSP(I)=CSP(I)/BLKI\C
C--------------------------------------------------------------------------
C FO FRFCUENCY SMOOTINGCTHE ESTIMATED SPECTRUM MAY BE CONSIDERED C



C AS REPRESENTIhG THE tMIUPCINT CF THE FREQUENCY INTERVAL

C SINCE ONLY HALF NUMBER OF THE POINTS ARE UNIQUE AFTER TRASFORM C

C THE SFECTRAL AVERAGE IS PERFGPMEE BASEC UPON THE TOTAL OF 4096 C

C POINTS AND TOTAL CF 94 PCINTS ARE OETAIED C

C--------------- ------------------------------------------------------ C

DO 113 I=1,10
113 CRS(I) = SQRTICSP(I)**2 + QSP(I)**2)

DO 8888 1=1,10
8888 WRITE(6,999) SPI(I) ,SP2(I),CRS( I,CSP( I),QSPI)

9999 FORMAT(IOX5Fl6.4)
DO 22 I=9,NF
PS1(1 )=O.O
PS22(I)=C.0
CS12( l)=C.0

22 QS12(I)=0.0
00 71 K=2,9
J=K-1
PS11 J)=SF (K)
PS2Z(J)=SP2(K)
CS12( J)=CSP(K)

71 QSI2(J)=Q-SP(K)
L=10
SA= 13
M4=4
K=9

24 DO 23 I=L,MA
PS11(K)=PS11(K)+SPI(I)
PS22(K)=PS22(K)+SP2(1)
CS12(K)=CS12(K)+CSP(l)

23 QS12(K)=QS12(K)+QSP(I)
IF (K .EF. 3q) GO TO 25
i=K+1



L=L+M4
MA=MA+M4
GO TO 24

25 CONTINCE
DO 42 J=9,38
PSl I( J)= PS11(J)/4.0
PS22(J)=PS22 (J)/4.0
CS12( J)=CS12(J) /4.0

42 QS12(J)=QS12(J)/4.0
L=130
MB=145
M16=16
K=39

52 DO 53 I=L,MB
PS11(K)=PS1(K)+SP1( I)
PS22(K)=PS22(K)+SP2(I)
CS12(K)=CS12K)J+CSP( I)

53 QS12(K)=QS12(K)+QSP(I)
IF (K .EQ. 62) GO TO 54
K=K+1
L=L+M16
MB=MB +M16
GO TO 52

54 CONTINUE
DO 43 J=39,62
PS11(J)=PS11(J)/16.0
PS22( J)=PS22(J)/16.C
CS12(J)=CS12(J)/16.0

43 QSI2(JJ=QS12(J)/16.0
L=514
MC=577
M64=64



X63
t5 DO 56 I=1,I$C

PSIl( K)=PSI f (1 4-SPlt I)
P.S22(K( =PS22(K)+SP2( I)
CSl2(K)=CSI2(K)+CSP( I)

56 QS12(K)=QS12(lKi+QSP(I)
IF (K E(;. 6t5) G(' TC 57
K=K+1
L=L+M64
!oC=MC+M64
GO TO 55

57 CONTINUE
0O 44 J=tE6
PSIlt J)=PS1I(J.)/64.C
PS22( J) =PS22(J) /64.0
CS12(J)=CS12(J)/64.C C

44 (CS2(J)=QSI,2(J)/64.O
L=205C
MO= 2305
P256=256
K=87

58 GO 59 I=L,MfJ
PSll(K)=PS11(YK)+SPI(I)
fPS22(K)=P522(lKJ+SP2(I)
CS12(K)=CS1 VK).CSP(l)

5C QS12(K)=QSI2(K)+QSP(I)

IF (K .EQ. 94) GO TO 60
K=K+i
L=L+M25C
M =iKJ ~D+ Ill2 5
G15 TLI 58

6~CON~TINUE



DC 45 J=E7,S4
PSII(J)=PSI1(J)/256.0
PS22(J)=PS22 (J)/256.0
CS12( J=CS12(J)/256. C

45 QS21JJ)=QS12(J)/256.0
DC 114 I=t1NP

114 CROS( I)=SQRT(CS12(I)**2 + QS12(I)**2)
DO 265 I=1,NP
AMPL2(I)=CS12(I)*CS12(I) + QS12(1)*QS12(I)

265 PHS(I) = + ATAN(QS12(I)/CS12(1))
00 266 I=1,NP
COH12(I)=AMP12(I)/(PS11(I)*PS22(1))

266 OEGPS(I)=180.O*PHS(I)/(2.0*PI)
00 28 I=1,NP
PNOM (I )=FREQ( I )*PS11(I)
PNOM2(I)=FREQ( I )*PS22( I)
CRSNM(I) =FREQ(I)*CRCS(I)
CSNOM(I)=FREQ(I)*CS12(I)

28 QSNM(I)=FREQ (I )*QS1241)
C----------------------------------------------------------

C ALL THE WRITTEN STATEMENT C
C-------------------------------------------------------------------------

IF (NOWID .EQ. 2 .AND. KOUNT .EQ. 1) GO TG 32
GO TO 36

32 WRITE(6,33)
33 FORMAT(1HI,5OX,'WINDOW NUMBER I'//)
36 CONTINUE

RITE (6,106)
106 FORMAT(5X,'SMCD PCWER SPFCT 1',5X,'SM[UD POWER SPECT 2',5X,'COS EC'

1,5X,'CUADSPEC',5X,'CHERENCY',5X,'PHASE(DEG),5X,IFRFQ',2X,'CROSS
2SPEC'/)
00 107 I=1,NP



107 RITE(6,103 PSil(I)rPS22(I),CS12(I),QS12(I),COH2(I),DEGPS(1),
IFREQ( I),CPOS(I)

108 FORMAT(1OXF1O.4, 1,,F10.4,6X,F8.4,6XF8.4,6XF8.4,6X,F8.2,4XF
8 .4

I,3XFe.3)
IRI TE(6,2C3)

203 FORMAT(//5X,'FRE3 KTPD SPEC 1',5X,'FREQ MUTLO SPEC 2',SX,'FPEQ MUT

LLD COSPEC',5X,' FREO FUTLC QUACSPEC',5X,'LOG OF FREQ ,5X,'FRFQ MULT

2CRO SS' /)
DO 204 I=1,NP

204 WRITE(6,205) PNCMl(1),PNM2(1),CSNM(1),QSNOM(1),FLOG(I),CRSNM(l)
205 FORMAT(IOX,FIO.4,15X,F1C.4,1OX,F10.4, 1OXFlO.41OX,F8.4,1OXF8.4)

C------------------ ------------------------------ C

C NTS CCrOTRCLS THE NUMBER OF TIME SERIES BEING CALCULATED. NCK C

C CONTROLS THE NUMBER OF DATA tINDOWS TO BE USED. C

C--------------------- -------------------------------------------------------
IF (KOUNT .EQ. NTS) GO TO 3000
KCUNT=KCUNT+ 1
00 11C I=1,NHF
SP1(I)=0.0
SP2(I )=0.0
CSP(I)=.0

110 CSP(i)=.O
GO TC 4000

3000 CONTINLE
IF (NCWID .EQ. NCK) GO TO 37
NUwOD=NOWID+1
DO 111 I=1,NHF
SPL(I)=0.O
SP241)=0.O
CSP(I)= .0

111 QSP(I)=0.0
RilND; 10



KOUNT=1
GO TO 4000

37 CONTINLE
S TCi P
END
SUBROUTINE FFT (U,V,X)
IMPLICIT REAL*4(A-H,P-Z)
COMPLEX*8 E,X,Z
CIMENSICN C(2049),X(8192),Z(2048),U(8192) ,V(8192)

C C
C---------------------------------------------------------------------C
C--------------------------------------------------------------------C
C N = TOTAL NC. OF DATA
C NS = STAGE NC .
C NJ = TOTAL NO. OF ADDITION ( AND SUBTRACTION ) STEPS IN EACH STAGE
C NU = TOTAL NO. OF ADDITIONS I CR SUBT. ) IN ONE ADDITION STEP
C IA = STARTING NO. OF EACH ADDITION STEP
C NT = ENDING NO. OF EACH AODITICN STEP
C J = ADDITICN STEP NC. IN EACH STAGE
C I , KA = SLBSCRIPT OF NEW X IN EACH STAGE
C --------------------------------------------- ------------------------ C

INVFRT=3
N=8192
NN=N/ 2
NM=NN/2
KK=NN+1
DO 12 I=1,N

12 X(I)=CMPLX(U(1),V(I))
MM= NM + I
CALL CCSINF (N,NNNM,CI
N S= 1
fN J = N N



SU=
1 NI=NJ/2

IA=1
N T= NU
DO 71 L=1,NM
LA=L+NM

71 Z(L)=X(LA)
C---------------------------------------------------------

NA=MM
N 8=1
KA=KK

C--------------------------------------------------------

00 2 J=1,NJ
NA=iNA-NU
NB=NB+NU
IF (J-NI) 41,42,43

41 E=CMPLX(C(NA),-C(NB))
GO TO 42

43 E=CMPLX(-C(NA),-C(NB))
42 DO 9 I=IANT

IF (J.LE.NI) GO TC 81
IC=I-NM

KA=KA+1
K=KA+NU
X(KA)=Z(IC)+X (I8)
X(K )=(Z(IC)-X(IB))*E
CG TO 9

81 IC=MM-I
I3= IC+NN
K A=KA-1
K=KA-\U



IF (J.EQ.NI) GO TO 82
XIKA)=(X(IC)-X(18))*E
GC-O TO 83

82 X(KA)=X(IC)-X(IB)
83 X(K)=X(IC)+X(IBI

9 CONTINUE
I A=IA+KU
NT= T+ N
IF (J.NE.NT) GO TO 22
NA=MM+U
NB= 1-NU
KA=NN
GO TO 2

22 KA=K
2 CONTINUE

C----------------------------------------------------------------------C
IF (NJ.EQ.2) GO TO 11
NU=2**NS
N S=N S+1
NJ=NI
GO TO 1

11 06 21 I=I,NN
IB=I+NN
E=X(I)+X(IB)
XIIB)=X(II)-XIB)

21 X(I =F
C---------------- --------------------------- ----------------------- C
C IHE FOLLOWING EIGHT STATEMENTS AkE USED ONLY IF INVERSE FOURIER C
C IRANSFORM IS NECESSARY IN THIS FFT PROGRAM. C
C ----------------------------------------------------------------------

IF (INVERT .EQ. 1) GC-TC 27
GC TO 28



27 DOi 23 I=1,N
23 X(I)=X(I)/N

tU ( 1) =PEAL (X (I)
DO 25 I=2tN

25 U (1) =REAL(X(N-1+2))
28F CONTI NUE

P ET lU R N
E N)
SUBROLTINE COuSINE (NtNNNMC)
DIMENSICN C(2049)
TN=NN
A NG =3. 1415~927 /TN
I NT B=N/8
CS=COS (AKG)
SN=SIN (ANG)

I I=NM+l
C( 111=0.
UO 39 J=1,INTB
JI=J+1
J.J = N M+2- J
C(JI )=C(J )*CS-C(JJ )*SN
Jm=NM~+1 -J

3, ; Cf JM)=C (J)*SJ+C( JJ) *CS
RET UR~N
FN



C------ ---------------------------------- c
C THIS PROGRAM SIMULATES A TIME SERIES BY USING THE VON KARMAN SEMI-
C EMPIRICAL SPECTRUM BY USING FAST FOURIER TRANSFORM METHOD. C
C THE SAMPLING RATE IS 20 SAMPLES PER SECOND TO CREATE THE 32768 C
C TOTAL NUMBER OF DATA POINTS FOR APPROXIMATELY OF 1638 SECONDS C
C--- ---------------------------------------------------------- C

DIMENSION A(32768,1,1), M(3), INV(8192), S(8192), PP(32768)
COMPLEX A
UBAR = 40.0
COEF = SQRT(32768.0*20.0/2.0)

C------------- ------------------------------------------ C
C THE VON KARMAN SEMI-EMPIRICAL SPECTRUM C
C BOTH GAUSS AND HARM ARE SCIENTIFIC SUBROUTINE IN THE IBM PACKAGE
C----------------------------------------------- C

DO 100 I = 2,16384
AI = I
FREQ = (AI-1.0)/1638.4
SPECT = (57.6*UBAR)/
1 ((1.0+70.78*((360.O*FREQ/UBAR)**2))**(5.0/6.0))
H = SQRT(SPECT)
CALL GAUSS (19,0.707,0.0,XI)
CALL GAUSS (13,0.7070.0,ETA)
XREAL = COEF*H*XI
XIMAG = COEF*H*ETA
A(1,I,1) = CMPLX(XREAL,XIMAG)

100 CONTINUE
DO 200 J = 1,16383
K = 16385 + J
L = 16385 - J
A(K,1,1) = CONJG(A(LI,1))

200 CONTINUE



A(1,1,1) = CMPLX (32768.0*UBAR,.0)
A(16385,1,1) = CMPLX(0.0,0.0)
M(1) = 15
M(21 = 0
M(.3) = 0
CALL HARM(A,M,INVS,-1, IFERR)
DO 400 I=1,32768

400 PP(I)=REAL(A(Il,1))
00 300 N = 1,32768

300 WRITE(10,50) PPIN)
50 FORMAT (A4)

WRITE(6,3000) (PP(I),I=1,32768,32)
3000 FORMAT(5X,12F10.2)

STOP
END
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